Linguagens de
programacao
e estrutura de

dados 9

unopar

Linguagens de
programacao e estruturas
de dados

Gisele Alves Santana
Nathalia dos Santos Silva
Merris Mozer

© 2018 por Editora e Distribuidora Educacional S.A.

Todos os direitos reservados. Nenhuma parte desta publicagdo podera ser reproduzida ou transmitida de qualquer
modo ou por qualquer outro meio, eletrénico ou mecénico, incluindo fotocopia, gravagédo ou qualquer outro tipo
de sistema de armazenamento e transmisséo de informagao, sem prévia autorizagéo, por escrito, da Editora e
Distribuidora Educacional S.A.

Presidente
Rodrigo Galindo

Vice-Presidente Académico de Graduagéo
Mério Ghio Junior

Conselho Académico
Alberto S. Santana
Ana Lucia Jankovic Barduchi
Camila Cardoso Rotella
Danielly Nunes Andrade Noé
Grasiele Aparecida Lourengo
Isabel Cristina Chagas Barbin
Lidiane Cristina Vivaldini Olo
Thatiane Cristina dos Santos de Carvalho Ribeiro

Revisora Técnica
Marcio Aparecido Artero

Editorial
Adilson Braga Fontes
André Augusto de Andrade Ramos
Leticia Bento Pieroni
Lidiane Cristina Vivaldini Olo

Dados Internacionais de Catalogacéo na Publicagéo (CIP)

Santana, Gisele Alves
S2321 Linguagens de programagéo e estruturas de dados /
Gisele Alves Santana, Nathalia dos Santos Silva, Merris
Mozer - Londrina: Editora e Distribuidora Educacional S.A.,
2018.
160 p.

ISBN 978-85-522-0314-8

1. Linguagem de programacéo. 2. Tipos abstratos de
dados. I. Silva, Nathalia dos Santos. II. Mozer, Merris. II. Titulo.

CDD 001.6424

2018
Editora e Distribuidora Educacional S.A.
Avenida Paris, 675 — Parque Residencial Jodo Piza
CEP: 86041-100 — Londrina — PR
e-mail: editora.educacional@kroton.com.br
Homepage: http://www.kroton.com.br/

Sumario

Unidade 1 | Algoritmos e seus tipos de representacio e estrutura de dados 7

Secdo 1 - Tipos abstratos de dados e funcdes 10
1.1 | Introducéo a Estrutura de Dados 10
1.2 | Estrutura de Dados no Dia a dia 12
1.3 | Funcdes 16
13.1 | Funcionamento 16
132 | Sintaxe 16
13.3 | Chamando as Fungoes 17
1.34 | Prototipos de Fungdes 18
135 | Comando Return 20
1.36 | Variaveis locais e globais 20
137 | Parametros das fungdes 21
1.3.8 | Passagem por Valor 22
139 | Passagem por Referéncia 23

Secdo 2 - Técnicas de programagcéo para a implementagdo de estruturas

de dados 26
2.1 | Ponteiros 26
2.1.1 | Operador de endereco (&) 27
2.1.2 | Declaragéo de Ponteiros 27
2.1.3 | Inicializag&o de Ponteiros 27
2.14 | Impressé&o de Ponteiros 29
2.2 | Alocagdo dinamica de memoria 30
2.3 | Registros 30
2.3.1 | Declaragio de um Registro 31
2.3.2 | Comando Typedef 33
2.3.3 | Registros e Ponteiros B
24 | Recursividade 34
Unidade 2 | Tipos e estruturas de dados 43
Secdo 1 - Vetores 47
11| Sintaxe para declaragdo de Vetores 47
1.2 | Sintaxe para acessar elementos do vetor 49
1.3 | Sintaxe com lagos para percorrer o vetor 50
Secdo 2 - Matrizes 55
2.1 | Sintaxe para declaragdo de matrizes 55
2.2 | Sintaxe para manipulacdo de matrizes 55
Secéo 3 - Tipos de Dados 58
3.1 | Tipos de Dados Abstratos 58
3.2 | Tipos Compostos de Dados 59
3.3 | Tipos de dados Heterogéneos 63
Unidade 3 | Estrutura de dados 71
Secdo 1 - Alocagdo dindmica de memoria 74
Secédo 2 - Listas e seus casos especificos (pilha e fila) 79
Secdo 3 - Algoritmos de pesquisa 92

Secdo 4 - Classificacdo 101

Unidade 4 | Arvores e grafos 111

Secdo 1 - Tipos abstratos de dados e funcdes 114
41 | Grafos 114
4.1.1| Notagao Formal 116
412 | Arcos 116
413 | Tipos de Grafos 117
4.14 | Grau de um Vértice 118
415 Ciclo 119
4.16 | Componentes Conectados 119
4.17 | Pontos de Articulagdo 120
4.1.8 | Caminho e Comprimento 121
4.2 | Arvores 122
4.3 | Arvore Binaria 125
431 | Arvore Estritamente Binaria 126
4.32.| Arvore Binaria Cheia 126
4373 | rvore Binaria Balanceada (AVL) 127
434 | Arvore Binaria Completa 127
Sec&o 2 - Arvore bindria de busca 129
44 | Arvore Bindria de Busca 129
45 | Implementacéo Estética de uma Arvore Binariade Busca 130
451 | Definicdo de um nd 131
452 | Inicializacdo 131
452 | Insercdo de Nos 132
453 | Implementac&o Dinamica de uma Arvore Binariade Busca | 137
4531 | Criacdo de uma Arvore 138
4532 | Insercio de Nos 138
4533 | Verificago de uma Arvore Vazia 139
4534 | Liberagdo de Memoria 140
4536 | Exclusio de Nos 141
46 | Percursos 143
46.1 | Percurso Prée-Ordem (R, E, D) 144
46.2 | Percurso In-Ordem (E, R, D) 144
463 | Percurso Pos-Ordem (E, D, R) 145

464 | Percurso em Nivel 146

Apresentacao

Ol3, aluno, seja bem-vindo!

A estrutura de dados € muito utilizada em diversas areas para a
resolucdo de problemas computacionais. A maneira de organizagao
dos dados afeta diretamente a eficiéncia de um algoritmo. Dessa
forma, dados que possuem melhor organizacao tendem a prover
maior eficiéncia e rapidez aos algoritmos que manipulam esses dados.
Para o entendimento das estruturas € necessario que vocé se lembre,
principalmente, do conceito de algoritmos, assim como conhega 0s
tipos de dados mais utilizados para a implementacdo de programas.
Neste livro, a Linguagem C é adotada para a implementacdo das
estruturas de dados por possuir alta flexibilidade e portabilidade.

Na Unidade 1, vocé sera levado a entender aimportancia da estrutura
de dados, assim como os principais tipos de estruturas utilizadas para
a organizacao dessas informacdes; a aprender o que sao funcdes,
compreendendo a diferenca entre passagem por valor e passagem por
referéncia; a estudar sobre ponteiros, que sao amplamente utilizados
para a alocacao dinamica de memoria, assim como compreender a
utilizacao de registros para o armazenamento de informag¢des que
possuem dados de tipos diferentes. Para concluir esta unidade, vocé
aprendera o conceito de recursividade, que € utilizada principalmente
para a resolucao de problemas matematicos mais complexos.

A Unidade 2 apresenta os tipos de dados pertinentes ao
desenvolvimento de sistemas computacionais, assim como suas
caracteristicas, para que vocé possa tomar boas decisdes quanto
a escolha e definicdo da estrutura de dados a ser utilizada em seus
projetos. Vocé ira aprender sobre os tipos de dados que podem ser
implementados na linguagem C, incluindo comandos, funcdes e
a sintaxe dessas implementacdes. Ao conhecer os tipos de dados
abstratos e compostos, homogéneos e heterogéneos, VOCe sera capaz
de criar estruturas adequadas para 0s seus programas.

O foco da Unidade 3 sdo as listas lineares e seus tipos principais:
pilha e fila. Vocé ira entender a logica utilizada para a implementagao
dessas estruturas de dados, utilizando técnicas de programagao, Como
ponteiros e alocacdo dindmica de memoaria, para sua implementacao.
Vocé também ira conhecer os principais tipos de algoritmos para a

pesquisa em estrutura de dados, bem como conceitos relacionados a
classificacdo ou ordenacado de elementos em uma estrutura.

Na Unidade 4 vocé aprendera sobre dois tipos de estruturas de
dados muito utilizados na érea da computacao: grafos e arvores. O foco
esta concentrado nas arvores binarias de busca. Dessa maneira, vocé
ird conhecer as maneiras para a implementacao desse tipo de arvore,
assim como exemplos, simulacdes envolvendo as operacdes mais
importantes e trechos de codigo na Linguagem C que implementam
essas operacdes. Para finalizar, serd definido o conceito de percurso
ou travessia de uma arvore binaria de busca, apresentando e ilustrando
quatro tipos de percursos.

Alem de todos os conceitos e exemplos apresentados neste livro,
0 material de estudos ainda contribuira para que vocé possa treinar
0s conhecimentos adquiridos por meio da realizacao de exercicios
orientados, Desejamos a vocé bons estudos e dedicacao para a
conclusao desta etapa.

Unidade 1

Algoritmos e seus tipos de
representacao e estrutura de
dados

Gisele Alves Santana

Objetivos de aprendizagem

Nesta unidade, vocé sera levado(a) a entender a importancia da
estrutura de dados, assim como os principais tipos de estruturas
utilizadas para a sua organizacao. Dentre os principais objetivos desta
unidade, estao:

. Aprender o que sao fungdes — conceito praticamente
indispensavel para a implementacdo de estruturas de
dados — por meio da diferenca entre passagem por valor e
passagem por referéncia;

. Estudar sobre ponteiros, que sdao amplamente utilizados
para a alocacao dinamica de memoria;

. Compreender a utiizacdo de registros para ©
armazenamento de informagdes que possuem dados de
diferentes tipos;

. Aprender o conceito de recursividade, que é utilizada
prinCipalmente para a resolucao de problemas matematicos
mais complexos.

Secdo 1| Tipos abstratos de dados e fungdes

Nesta secao vocé estudara os principais conceitos relacionados as Estruturas
de Dados, conhecendo seus tipos mais importantes e associando-os a situacdes
do seu cotidiano; entendera o conceito de funcdes por meio de sua sintaxe, seus
comandos basicos, as diferencas entre os tipos de passagem, de parametros, além
de varios exemplos na Linguagem C de aplicacdo de fungdes.

Secdo 2 | Técnicas de programacgao para a implementag&o de estruturas de
dados

Nesta secdo, voceé vai aprender sobre ponteiros, que possuem comao conteudo
0 endereco de memadria de outra variavel; ser apresentado(a) a alocacéo dinamica
de memocria por meio de demonstracdes de funcdes para a alocacao e liberacao
de memodria de um computador; estudar os registros, que possuem a capacidade
de armazenar cole¢des de dados de diferentes tipos e, por fim, aprender sobre a
recursividade, destacada como uma ferramenta de programagao muito poderosa
na resolucao de problemas computacionais complexos.

Introducao a unidade

Nesta unidade, serdo apresentados Os conceitos basicos sobre
Estrutura de Dados que, basicamente, definem os mecanismos para
a sua organizagcao, assim como 0s metodos de acesso aos dados
processados por um programa.

Essa estrutura € muito utilizada em diversas areas para a resolucao
de problemas computacionais. A maneira de organizacao dos dados
afeta diretamente a eficiéncia de um algoritmo e, dessa forma, dados
que possuem melhor organizacao tendem a prover maior eficiéncia e
rapidez aos algoritmos que manipulam esses dados.

Para o entendimento das estruturas de dados, € necessario que
vocé se lembre, principalmente, do conceito de algoritmos, assim
como conheca os tipos de dados mais utilizados para a implementacao
de programas, e, nesta unidade, a Linguagem C, por possuir alta
flexibilidade e portabilidade, sera adotada para essa implementacao.

Existem varios tipos de estruturas de dados e, dependendo do
problema, uma determinada estrutura € mais adequada para a sua
resolucao do que outra; logo, ao final do estudo, espera-se que vocé
conhega as caracteristicas de alguns tipos e consiga identificar os mais
adequados para a resolucao de problemas especificos.

Para a implementagdo da maioria de tais estruturas sao utilizadas
funcdes para a manipulagao de seus dados. Assim, esta unidade traz
0s conceitos mais importantes relacionados as funcdes, bem como
varios exemplos em linguagem C. Algumas técnicas de programacao
essenciais para a implementacao de estrutura de dados tambeém sao
apresentadas, como a alocacao dinamica de memoria, ponteiros e
registros.

Para finalizar, esta unidade apresenta o conceito de recursividade,
uma pratica muito utilizada para a resolucao de problemas
computacionais complexos que, para ser melhor compreendida, seu
conceito sera exemplificado por meio de uma funcdo matematica.

10

Secaol

Tipos abstratos de dados e funcoes
Introducgdo a secao

Esta secao apresentara e ilustrara o©os princCipais conceitos
relacionados as Estruturas de Dados, seus tipos mais importantes e,
por fim, associara cada um deles com situacdes do seu cotidiano; ela
também apresentara o conceito de funcdes por meio de sua sintaxe,
seus comandos basicos, a diferenca entre os tipos de passagem de
parametros e varios exemplos na Linguagem C de aplicacdo de
funcdes.

1.1 Introdugdo a estrutura de dados

Em programacao, os tipos de dados definem o conjunto de valores
gue uma variavel pode assumir ou as operagbes que podem ser
realizadas sobre ela. Por exemplo, uma variavel booleana (tipo logico)
pode assumir dois valores especificos: verdadeiro ou falso.

Ao declarar uma variavel, automaticamente € reservada uma
guantidade especifica de bytes na memaoria para 0 armazenamento dos
valores dessa variavel. Assim, pode-se dizer que os tipos de dados sdo
metodos para interpretar o conteldo da memaoria de um computador.

Existermn dois tipos de alocacao de memoria:

. Alocacao estatica: quando é alocado um espaco fixo e
contiguo na memoria para a variavel;

. Alocacao dinamica: quando € alocado um espaco variavel,
que é criado sequndo a necessidade do programa.

Um item especificado em termos das opera¢cdes que pode ser
realizado sobre ele ¢ chamado de Tipo Abstrato de Dados (TAD).
Vamos supor que precisamaos projetar um item para realizar algumas
tarefas; para isso, devemos especificar esse item de acordo com as
operacdes realizadas, ao inves de sua estrutura interna.

Para entender melhor esse conceito, considere 0s passos para
O projeto de um automovel. Inicialmente, sabemos que todos os
automoveis possuem caracteristicas similares, como: pneus, volante,
cambio, motor etc., e ao ser analisado por esse aspecto, pode ser

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

considerado um tipo abstrato de dados, porem, para a construcao do
automovel com as caracteristicas especificadas € necessario decidir
quais estruturas serdo utilizadas para que esse trabalho tenha sucesso.
Automoveis diferentes possuem estruturas diferentes, como: tipo de
cambio, tipo de motor, tipo de material etc., e atraves dessas estruturas
pode-se construir o automovel especificado; No entanto, ao extrairmos
0s detalhes da construcdo, todos os automaoveis possuem as mesmas
caracteristicas. Logo, pode-se dizer que um tipo de dado representa
uma descri¢cao logica, enquanto uma estrutura de dados representa
uma descricao concreta.

O TAD (Tipo Abstrato de Dados) € o nivel logico e a estrutura de
dados € o nivel de implementacao. Assim, a Estrutura de Dados € um
metodo particular de se implementar um TAD.

Uma estrutura € construida dos tipos primitivos (inteiro, real, char
etc.) ou dos tipos compostos (array, registro, etc.) de uma linguagem
de programacao.

Como exemplos de estrutura de dados, pode-se citar:

e Vetores (arrays).

. Registros (structs).

. Listas Ordenadas.

. Pilhas.

. Filas.

. Deques.
« Arores.
. Grafos.

Essas estruturas de dados permitem que diversas operacdes sejam
realizadas. Entre as mais utilizadas, destacam-se:

. Criacdo (declaracao).
. Percurso.

. Busca.

. Insercao.

. Alteracao.

. Exclusdo.

Independentemente do tipo de dado com o qual se deseja trabalhar,
primeiramente € realizada a operacao de criacao; em seguida, pode-

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

11

12

se realizar inclusdes, alteracdes ou remocdes de dados. Outro tipo de
operagao gue pode ser realizada € o percurso, gue faz a varredura de
todos os elementos armazenados em uma estrutura de dados.

1.2 Estrutura de Dados no Dia a dia

Quando se realiza um cadastro de clientes, quais séo os dados
mais importantes que devem ser considerados, por exemplo: a idade
Ou a cor dos cabelos? Bem, isso vai depender muito dos requisitos
levantados na elaboracdo do projeto do sistema. Além disso, deve-se
considerar as operacdes que serao necessarias para a manipulacao
dos dados, por exemplo: como encontrar um cliente ou inserir um
novo cliente?

Como foi visto, a estrutura de dados ¢é utilizada, principalmente, para
a organizacao das informacdes, proporcionando rapidez No momento
da recuperacao de algum item; no entanto, como as estruturas de
dados podem ser aplicadas no dia a dia?

Imagine a organizacdo de uma empresa que possui um presidente,
um diretor administrativo (com as secdes de recursos humanos),
um diretor de vendas e um diretor financeiro (com as secdes de
contabilidade e tesouraria). Geralmente, essa hierarquia € representada
graficamente por um organograma, que pode ser associado a estrutura
de uma arvore, conforme observado na Figura 1.1.

Figura 1.1 | Modelo de arvore

Presidente
|
I l |
Diretor Administrativo Diretor de Vendas Diretor Financeiro
I |
[l |
Segdo de RH Segéo de Patriménio Segdo de Contabilidade Secédo de Tesouraria

Fonte: elaborada pela autora

Outro tipo de associacdo das estruturas de dados com eventos do
cotidiano pode ser feita em relacao as caixas de pizzas, que geralmente
sao empilhadas pelo entregador, conforme Figura 1.2. Essa estrutura
pode ser associada a uma pilha.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

Figura 1.2 | Modelo de pilha

Fonte: elaborada pela autora.

Vocé ja notou a posicao na qual as pessoas esperam sua vez por
atendimento em um banco? Elas geralmente formam uma fila, por
ordem de chegada, conforme Figura 1.3. Assim como a fila da vida real,
na estrutura de dados a fila também tem as mesmas caracteristicas.

Figura 1.3 | Modelo de fila

Fonte: <https://imgs.jusbr.com/publications/noticias/images/625121495215303 jpg>. Acesso em: 12 ago. 2017.

O grafo € outro tipo de estrutura de dados que pode ser associado
com situacdes cotidianas. Os possiveis trajetos de um carteiro podem
ser representados atraves desse tipo de estrutura de dados, conforme
observado na Figura 1.4. Geralmente, os grafos possuem um peso
associado a cada aresta, que também pode ser entendido como o
custo gasto para o percurso de um vertice a outro.

U1 - Algoritmos e seus tipos de representagédo e estrutura de dados

13

14

Figura 1.4 | Modelo de grafo

100

Fonte: <http://4.bp.blogspot.com/-j9h8d0dzM21/UbSAXvd3nll/AAAAAAAAACM/OwgWPDBI_Ys/s1600/Desenhol.png>.
Acesso em: 12 ago. 2017.

e Questdo para reflexao

Vocé conhece o sistema de diretorios utilizado pelo sisterma operacional
Windows? Qual o tipo de estrutura de dados que vocé acha que é
empregado para a organizagdo dos dados (pastas e arquivos) do seu
computador?

De acordo com Mizrahi (2006), existem dois tipos de estruturas
de dados: lineares e nao lineares. Nas estruturas lineares, o primeiro e
O ultimo elemento séo bem definidos e os elementos intermediarios
possuem um antecessor e um sucessor. Exemplos de estruturas
lineares: filas, pilhas, vetores etc. Ja nas estruturas ndo lineares existe
uma relacdo hierarquica ou qualquer outro tipo de relacao entre os
elementos, e 0 mais importante é saber identificar a melhor estrutura
para a resolucao de cada tipo de problema.

Segundo Tenenbaum, Langsam e Augenstein (2004), a manipulagao
dos dados em uma estrutura pode ser feita de forma sequencial ou
encadeada. Na forma sequencial, © espaco de memoria € pré-alocado
No momento em que a estrutura é definida, tendo, assim, um tamanho
fixo; ja na forma encadeada, o tamanho alocado € inicialmente

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

desconhecido, sendo o espaco reservado conforme a necessidade e
em tempo de execugao.

Neste livro, nOs veremaos primeiramente as estruturas de dados que
sao manipuladas de forma sequencial, como os vetores, por exemplo;
mas, antes de iniciarmos esse estudo é fundamental saber como
manipular as informacdes de uma estrutura de dados.

Imagine uma lista de notas e as operacdes que se pode realizar com
ela. Essa lista inicialmente esta vazia, mas algumas notas serdao inseridas,
depois removidas, alteradas, e até mesmo uma operacao de busca por
uma determinada nota podera ser realizada. Toda vez que se desejar
inserir uma nova Nota na lista, um Mesmao conjunto de instrucdes sera
executado. Nesse caso, as boas praticas de programacao sugerem
que se crie uma funcao chamada ‘inserir’, por exemplo, e sempre
que precisarmos inserir uma nota, basta solicitar que o computador
execute a funcao “inserir”.

Em programacao, todas essas operacdes para a manipulacao de
uma estrutura de dados sdo implementadas por meio de funcdes, e
a linguagem de programacgao mais utilizada para isso € a linguagem
C, uma vez que possui alta flexibilidade e portabilidade. Assim, nesta
unidade, estudaremos algumas técnicas importantes dessa linguagem
para a implementacao das estruturas de dados.

@ Para saber mais

O C é uma linguagem de proposito geral, sendo adequada a
programacao estruturada. No entanto, € mais utilizada para escrever
compiladores, analisadores léxicos, bancos de dados, editores de
texto etc. A linguagem C pertence a uma familia de linguagens cujas
caracteristicas sao: portabilidade, modularidade, compilacdo separada,
recursos de baixo nivel, geracao de codigo eficiente, confiabilidade,
regularidade, simplicidade e facilidade de uso. Nos links a seguir, vocé
tem acesso a apostilas com varios conceitos dessa linguagem de
programacao:

Disponivel em: <ftp://ftp.unicamp.br/pub/apoio/treinamentos/linguagens/c.
pdf>. Acesso em: 12 ago. 2017.

Disponivel em: http:// www2.dcc.ufmg.br/disciplinas/pc/source/introducao_c_
renatocm_deeufmg.pdf> . Acesso em: 12 ago. 2017.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

15

16

1.3 Fungdes

"Uma funcao é um conjunto de instrucdes desenhadas para cumprir
uma tarefa particular, agrupadas numa unidade com um nome para
referencia-l@" (MIZRAHI, 2006, p. 117). As funcdes sdo usadas para
Criar pequenos pedacos de codigos separados do programa principal
e servem para agrupar um conjunto de instrucdes de acordo com
a tarefa que elas desempenham. A principal finalidade das funcdes
€ impedir que o programador tenha que escrever 0 mesmo codigo
repetidas vezes. Para exemplificar o conceito de func¢do, imagine um
sistema de controle de estoques; nesse sistema, algumas operacdes
como inclusdo ou exclusao de produtos sdo executadas com certa
frequéncia. Dessa maneira, essas operacdes podem serimplementadas
em forma de funcdes e todas as vezes que houver a necessidade de
cadastrar um novo produto, por exemplo, a funcao de ‘inclusao” é
chamada.

1.3.1 Funcionamento

As funcdes agrupam um conjunto de comandos e associam a ele
um nome, e o0 Uso desse nome € uma chamada da func¢do. Apos sua
execucao, o programa volta ao ponto do programa principal situado
imediatamente apos a chamada, e a essa volta damos nome de retorno.

1.3.2 Sintaxe

"A sintaxe pode ser definida pelo conjunto de regras que definem as
sequéncias corretasdos elementos de uma linguagem de programacao”
(MIZRAHI, 2006, p. 117). A sintaxe de uma funcdo é muito semelhante
a de uma funcdo main(). A Unica diferenca € que a main() possui um
nome especial, pois essa funcdo € a primeira a ser chamada quando o
programa ¢ executado.

Os programas em linguagem C podem ser executados em diversos
compiladores gratuitos, incluindo o Code Blocks (disponivel para
download em: http://www.codeblocks.org/) ou Dev C++ (disponivel
para download em: http://www.bloodshed.net/devcpp.html).

A seguir, tem-se um exemplo da estrutura de uma funcao:

<tipo> <nome>(<parametros>)
{
<declaragdes locais>;
<comandos>;
return //expressao ou valor compativel com o tipo de retorno

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

Como se percebe, os elementos basicos de uma funcdo sdo:
tipo, nome e parametros. O "tipo” define o tipo de dado que a fungado
retornara como o resultado de sua execucdo; o ‘nome” indica qual
€ 0 nome da funcao, ja os parametros sao utilizados para transmitir
informacdes para a funcao.

1.3.3 Chamando as Fung¢des

Uma chamada a uma funcao é feita escrevendo-se o nome dela
seguido dos parametros fornecidos (entre parénteses). Se nao houver
parametros, ainda assim, devem ser mantidos os parénteses, para que
o compilador diferencie a chamada de uma funcdo e a de uma variavel.
Além do mais, 0 comando de chamada da fungao deve ser sequido de
ponto e virgula, e as funcdes apenas podem ser chamadas depois de
terem sido declaradas.

Para chamar a funcao “potencia’, por exemplo, deve-se escrever a
seguinte linha de instrucdo: potencia ();

No proximo exemplo, tem-se o codigo de um programa que
possui uma funcdo chamada ‘mensagem”. Essa funcao vem antes
do programa principal e € chamada (invocada) dentro do mesmo. A
fungcao ‘mensagem” € do tipo void, ou seja, Nao retorna nenhum valor
ao programa principal. Ao compilar esse codigo, a saida do programa
sera a frase: "Ola, eu sou uma fungao”.

#include<iostream.h> // inclusdo das bibliotecas

void mensagem () // n&o retorna nenhum valor ao programa principal. Nao ha
ponto-e-virgula aqui!

printf ("Ola, eu sou uma fungéo");

}

int main () { //programa principal
mensagem (); //chamando uma fungdo sem argumentos

}

E possivel notar, no exemplo a seguir, outro programa que possui
uma funcdo chamada “potencia’, que calcula o quadrado de um
determinado valor. Essa funcao € invocada no programa principal
através do comando "potencia ();". A partir desse momento, a execucao
do programa principal para, € a func¢ao € iniciada, criando duas variaveis

U1 - Algoritmos e seus tipos de representagédo e estrutura de dados

17

do tipo inteiro. Em seguida, € solicitado que o usuario digite um valor,
que sera multiplicado por ele mesmo e o resultado sera atribuido a
varigvel “‘pot’, que € escrita na tela. Ao final da execu¢do de todos
0s comandos da funcao, a execucao do programa retornara a linha
posterior, a chamada da funcdo no programa principal.

#include<iostream.h> // inclusdo das bibliotecas

int potencia () //ndo ha ponto-e-virgula aqui!

{
int x, pot;
printf (“Digite um numero: \n“);
scanf(“%d”, &x);
pot = x * x;
printf(“\nPotencia = %d*, pot);
}
int main ()
{
potencia (); /chamando uma fungdo sem argumentos
return O;
}

Geralmente, a maioria dos programas possui varias funcdes, cada
uma executando uma tarefa especifica.

(%) Para saber mais

A Linguagem C possui uma biblioteca chamada: <math.h>. Nessa
biblioteca, estdo disponiveis varias funcdes matematicas, como:
poténcia, raiz quadrada etc.

Confira mais informacdes no link a seguir: <http://linguagemc.com.
br/a-biblioteca-math-h/>. Acesso em: 12 ago. 2017.

1.3.4 Protdtipos de Funcgdes

Até o conteudo estudado, todas as funcdes ficaram localizadas
l0ogo no inicio do programa e apos as inclusdes das bibliotecas, pois
nao se pode utilizar uma funcao sem antes declara-la. Porém, existe
uma forma de se escrever uma funcao depois do programa principal e

18 U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

isso € possivel com a utilizacao de prototipos de funcdes.

‘Os prototipos podem ser considerados como declaracdes de
funcdes” (MIZRAHI, 2006, p. 120). O protdtipo € colocado no inicio
do programa (apos a inclusdo das bibliotecas), estabelecendo o tipo,
nome e a lista de parametros da funcao.

Suponha que o programa contenha uma funcdo chamada
‘potencia”. A sintaxe do prototipo dessa funcao sera:

int potencia (int a),

Repare que € igual ao cabecalho da definicao da funcdo; porém, ao
invés do { (abre chaves) tem-se o; (ponto e virgula).

A sequir, sera apresentado um programa completo que utiliza o
recurso de prototipos de funcdes.

#include<iostream.h>
int potencia (); // protétipo da funcédo

int main ()

{
potencia (); /chamando uma fungéo
system(“PAUSE);
return 0;

}
int potencia () / definigéo da funcao

int x, pot;

printf (“Digite um numero: \n®);
scanf(“%d”, &x);

pot = x * x;

printf(“\nPotencia = %d", pot);

(%) Para saber mais

No link a seguir vocé encontra a definicdo e utilidade do comando
system("PAUSE"), que é basicamente usado para interromper a
execucao de um programa.

Disponivel em: <http://www.ime.usp.br/~elo/IntroducaoComputacao/
Esqueleto%20de%20um?%20programaz20em%20C.htm>. Acesso em:

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados 19

20

12 ago. 2017.

Ja o comando return 0 pode ser utilizado quando a funcdo ndo retorna
nenhum valor. No link a seguir, vocé encontra mais explicacdes sobre
esse comando:

Disponivel em: <http://linguagemc.com.br/funcoes-em-c/>. Acesso
em: 12 ago. 2017.

1.3.5 Comando Return

‘O comando return termina a execucdo de uma funcao e retorna
O controle para a instru¢cdo sequinte do codigo da chamada da
funcao” (MIZRAHI, 2006, p. 123). Quando uma fungcao ndo tem um
tipo de retorno definido, o compilador considera que o tipo de retorno
adotado é void.

Existem trés sintaxes possiveis associadas ao comando return:
. return;

. return expressao;

. return (expressao).

Para ilustrar a utilizacdo do comando return foi desenvolvida uma
funcao chamada "Potencia’, que recebe como parametro o valor da
variavel X" do programa principal e retorna o quadrado desse valor.

int Potencia (int x)

{
}

return x*x;

Uma questao importante em relacdo a esse comando € o fato do
mesmo poder retornar apenas UM valor. Se o programa necessita que
mais valores sejam modificados por uma funcao, outra maneira de
passagem dos parametros se faz necessaria. NOs estudaremos sobre
esse assunto mais adiante nesta secao.

1.3.6 Variaveis locais e globais

Segundo Mizrahi (2006), um conceito muito importante em
funcdes € o de variaveis locais. A declaracao das variaveis da funcao

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

deve vir no inicio da funcao, antes de qualquer outro comando. Uma
varidvel declarada dentro de uma fungao € ‘local’, ou seja, sO existe
dentro da funcdo. Ao ser iniciada a funcao, a variavel € criada, e quando
a funcdo termina, a variavel € apagada.

O escopo de uma variavel e definido pelas regides onde a variavel
pode ser utilizada. Por exemplo, as variaveis declaradas no inicio da
funcao principal podem ser utilizadas em qualquer lugar dentro da
funcdo principal, porém, apenas DENTRO dela, ou seja, NAO podem
ser utilizadas em outra funcao.

Variaveis declaradas no mesmo escopo (mesma funcao) precisam

ter nomes diferentes, mas nomes podem ser ‘reaproveitados” em
outros escopos (outras fungoes).

1.3.7 Parametros das fungoes

‘Os parametros de uma func¢do sao utilizados para transmitir
informacgdes para a funcao’, (MIZRAHI, 2006, p. 125). Uma funcao pode
receber qualquer numero de argumentos, sendo possivel escrever
uma funcao que Ndo receba nenhum argumento. No caso de uma
funcdo sem argumentos pode-se escrevé-la de duas maneiras:

. Deixandoalista de argumentos vazia (mantendo os parénteses);
. Colocando o tipo void entre os parénteses.

Os parametros sao inseridos entre os parénteses apos 0 nome da
funcdo e separados por virgulas. A seguir, sera apresentado o exemplo
de uma fun¢do que calcula a area de um retangulo, dados os valores
da base e da altura. Repare que no programa principal € declarada uma
variavel chamada ‘ret’, que recebe o valor retornado pela funcao “area”.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

21

22

#include<iostream.h> // inclusao das bibliotecas
int area (int base,int altura); // prototipo da funcao

int main () {// programa principal
int a,b,ret;
printf("\nDigite o valor da base do retangulo: ");
scanf("%d", &b);
printf("\nDigite o valor da altura do retangulo: ");
scanf("%d", &a);

ret = area (b,a); /chamando a fungdo com a passagem das variaveis b, a
printf("\nArea do retangulo = %d", ret);
system ("PAUSE");

}

int area (int base, int altura) { // funcao
int a;
a = base * altura;
return a; // retorna para o programa principal o valor da area calculada

}

Se mais de um parametro for necessario, ou seja, passar mais de
um valor para uma funcao, esses podem ser colocados na lista de
parametros separados por virgulas. Pode-se passar quantos parametros
desejar. Existem duas formas utilizadas para passagem de parametros:
passagem por valor e passagem por referéncia.

1.3.8 Passagem por Valor

‘A passagem por valor € a forma mais comum utilizada para
passagem de parametros” (MIZRAHI, 2006, p. 126). Por exemplo,
considere func¢des trigonomeétricas, como seno, cosseno etc. A funcao
seno recebe o valor de um angulo (um numero real) e devolve o seno
desse dngulo. Vejamos:

float seno (float angulo);

Quando as varidveis sdo passadas por valor, a funcdo cria novas
variaveis do mesmo tipo e copia nelas os valores dos parametros
(variaveis) passados. Assim, as fungdes nNao tém acesso as variaveis
da funcao principal (int main), ndo podendo modificar os valores das
mesmas.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

1.3.9 Passagem por Referéncia

Até agora foi visto que as funcdes podem retornar apenas um unico
valor. Porém, algumas vezes, € necessario retornar mais de um, e
quando isso acontece, utiliza-se a passagem por referéncia. A principal
vantagem nesse tipo de passagem € que a funcdo pode acessar as
variaveis da funcao principal.

Para tanto, utiliza-se um operador chamado de operador unario de
referéncia, que é simbolizado por “&". Esse operador cria outro nome
para uma variavel ja criada. Considere as instrucdes:

intn;
int&nl=n;

Analisando as instrucdes, sao declaradas duas variaveis, 'n” e 'nl".
O operador &nl = n indica que agora "n1" é outro nome para 'n”. Ou
seja, todas as operacdes em qualquer das duas variaveis ttm o mesmo
resultado. O operador "&" faz referéncia ao endereco de memoria de
uma variavel; no entanto, uma referéncia ndo € uma copia da variavel a

quem se refere, mas sim, a mesma variavel sob diferentes nomes.

Analisemos agora o exemplo de uma fungao que tem o objetivo
de alterar o valor de duas variaveis, conforme programa apresentado
a seqguir.

#include<iostream.h>

int altera (int x, int y) //Fungéo

{

x=5;
y=18;
}
int main() {
inta, b;
a=10;
b =20;
printf(“\nValor de a: %d*, a); //Imprime na tela o valor da variavel a
printf(“\nValor de b: %d*, b); /Imprime na tela o valor da variavel b
altera (a,b); /Chamada da fungéo
printf(“\nValor de a: %d”, a);
printf(“\nValor de b: %d*, b);
system (“PAUSE”);

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados 23

24

Compilando o programa, nota-se que os valores das variaveis “a"
e 'b" ndo foram alterados no programa principal. Quando a funcdo
“altera” é chamada e inicializada, os valores sdo trocados (x = aey =
b), entretanto, quando a fungao termina, as variaveis da funcdo (x e y)
sao destruidas.

Como fazer para que a funcao “altera” mude realmente os valores
das variaveis “‘a" e "b"?

Nesse caso, utiliza-se 0 operador unario ‘¢" antes do nome das
variaveis que sao passadas por parametro, conforme o cabecalho da
funcao:

int altera (int& x, int& y) {

A sequir sera apresentado um programa que realmente faz a
modificacao dos valores das variaveis no programa principal.

#include<iostream.h>

int altera (int &x, int &y) //Funcéo
{

5;
15;

X
y
}
int main()
{
inta, b;
a=10;
b = 20;
printf(“\nValor de a: %d “, a); /Imprime na tela o valor da variavel a
printf(“\nValor de b: %d “, b); //Imprime na tela o valor da variavel b
altera (a,b); //Chamada da fungéo
printf(“\nValor de a: %d”, a);
printf(“\nValor de b: %d“, b);
system (“PAUSE”);

O operador unario retorna o endereco de memoria da variavel e,
com esse tipo de passagem, nao se tem mais copias das variaveis, mas
sim, o acesso direto as variaveis da fungao principal. Entdo, alterados
0s valores das variaveis na funcao, altera-se também os seus valores
No programa principal, pois nesse caso, estaremos lidando com as

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

mesmas variaveis.

E, entdo, conhecidos os conceitos mais importantes relacionados a
utilizacao de funcdes, agora € o momento de aprendermaos sobre um
conceito muito utilizado para a manipulacdo de estruturas de dados:
0S ponteiros.

Finalizando a secado

Nesta secdo, vocé aprendeu sobre 0OS principais conceitos
relacionados as Estruturas de Dados, assim como conheceu seus
tipos mais importantes; foi apresentado(a) ao conceito de fungdes,
a sua sintaxe, aos seus comandos basicos, a diferenca entre os tipos
de passagem de parametros e a varios exemplos na Linguagem C de
aplicacao de funcdes.

Atividades de aprendizagem

1. Vocé ja adquiriu algumas habilidades de programacdo no decorrer
desta secdo. Dessa forma, € proposto que vocé utilize seus conhecimentos
prévios relacionados aos algoritmos e a Linguagem de programacao C e
implemente um programa que receba do usuario (no programa principal)
duas variaveis: x, y. Através de uma funcéo, calcule a poténcia do valor x (x é
a base, y é o expoente).

2. Vocé aprendeu, nesta secdo, a diferenca entre a passagem por valor e
passagem por referéncia para a implementacao de fungdes. Considerando
o que foi estudado, faca um programa em C que contenha uma funcao
que receba dois valores inteiros por parametro e retorne-os ordenados em
ordem crescente.

U1 - Algoritmos e seus tipos de representagédo e estrutura de dados

25

26

Secao 2

Técnicas de programacao para a implementacao
de estruturas de dados

Introducdo a secao

Nesta secao, vocé ira aprender que Os ponteiros possuem como
conteudo o endereco de memaria de outra variavel: serd apresentado(a)
a alocacdo dinamica de memoria, atraveés de demonstracdes de
funcdes para a alocacao e liberacao de memoria de um computador;
aprenderd que oOs registros possuem a capacidade de armazenar
colecdes de dados de diferentes tipos e, por fim, obtera explicacdes
a respeito da recursividade, destacando-se como uma ferramenta
de programacdo muito poderosa e empregada para a resolucao de
problemas computacionais complexos, podendo ser usada sempre
que for possivel expressar a solucao de um problema em funcao do
proprio problema.

2.1 Ponteiros

"Ponteiros sao variaveis cujo conteudo € um endereco de memoria”
(MIZRAHI, 2006, p. 144). Assim, como um ponteiro endereca uma
posicao de memoria que contém valores e um determinado endereco,
diz-se que ele aponta para esse endereco de memoria. Logo, como o
valor do ponteiro € o endereco de outra variavel, diz-se que ele aponta
para essa variavel. Na linguagem C, as variaveis estao associadas a um
nome, um tipo, um valor e um endereco de memoria. Por exemplo:

int x = 10;

char nome = "a";

Na memoria, o armazenamento dessas variaveis é ilustrado na
Figura 1.5.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

Figura 1.5 | Armazenamento das variaveis na memoria

Endereco | Valor
0x0100 } %
0x0101 10

0x0102
0x0103 a’
0x0104
0x0105

} nome

Fonte: elaborada pelo autora

A variavel inteira "x" estd armazenada no endereco "0x0100". Ela
utiliza dois bytes de memaria (quando um objeto usa mais de um byte,
seu endereco € aquele onde ele comeca - nesse caso, 0x0100 e nao
0x0101). A variavel do tipo char esta armazenada no endereco “0x0103"
e usa um byte de memoaria, e o compilador € responsavel por controlar
0s locais de armazenamento das variaveis.

2.1.1 Operador de endereco (&)

O operador de endereco (&) fornece o endereco de memoria onde
estd armazenada uma variavel. Lé-se "o endereco de”. Esse operador
pode ser usado conforme nas expressdes a sequir:

&x tem valor 0x0100
nome tem valor 0x0103
2.1.2 Declaragdo de Ponteiros

Para declarar um ponteiro basta utilizar o operador *(asterisco)
antes do nome da variavel. Ponteiros sdo tipados, ou seja, devem ter
seu tipo declarado e somente podem apontar para variaveis do mesmo
tipo. Acompanhe os exemplos a sequir:

int *pont; // define um ponteiro para inteiro chamado pont.
float *nota; // define um ponteiro para real chamado nota.
char *sexo; // define um ponteiro para caractere chamado sexo.

struct aluno *faculdade; // define um ponteiro para uma estrutura
chamado faculdade.

2.1.3 Inicializacdo de Ponteiros
Até agora os ponteiros foram declarados, mas ainda nao foram

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

27

inicializados, ou seja, eles apontam para um lugar indefinido na
memoria, € € necessario, antes de ser utilizado, que ele seja apontado
para algum lugar conhecido, ou, em outras palavras, € preciso que ele
seja inicializado.

Como exemplo de inicializacao de ponteiros, considere o seguinte
trecho de codigo:

intx =5;

int *pt;

pt = &x;

No exemplo, foi criada uma variavel do tipo inteiro chamada X" e
atribuido o valor 5 para ela; bem como foi criado um ponteiro para
o inteiro "pt". A linha de codigo: pt = &x significa que a expressao &x
fornece o endereco de X', o qual € armazenado em “pt’, que passa a
apontar para o endereco de memoria da variavel x". Na Figura 1.6, tem-
se a ilustracao do funcionamento do ponteiro “pt”.

Figura 1.6 | Funcionamento de um ponteiro

X 5

pt

Fonte: elaborada pelo autora

Pode-se alterar o valor de “x" utilizando "pt". Para isso, deve-se usar o
operador "inverso” do operador &, que € o operador *.

O operador * possui dois empregos distintos no uso de ponteiros:

. Na declaracdo de uma variavel, indicando que ela € um
ponteiro;
. Na implementacdo do programa, sendo utilizado para a
manipulacdo do conteudo ou valor de variavel.
O valor de X" pode ser alterado atraveés do ponteiro “pt’, por
exemplo: *pt = 15; //altera o valor de “cont” para 15.

No codigo a seguir, tem-se o exemplo de um programa na
linguagem C que declara uma variavel do tipo inteiro, assim como um
ponteiro do mesmo tipo. Esse ponteiro € inicializado, ou apontado

28 U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

para a variavel x". Ao compilar o programa, percebe-se que o valor do
ponteiro € o endereco de memoria da variavel X",

#include <iostream.h>

int main()

{
int x;
int *pt; // declara um ponteiro para uma variavel do tipo inteiro
x=10;
pt = &x;
printf("Valor de x: %d, Endereco de x: %d\n", x, &x);
printf("Valor de pt: %d, Contetudo de pt: %d\n", pt, *pt);
system("PAUSE");

e Questdo para reflexao

Quais os principais problemas que podem ocorrer quando um ponteiro
ndo é inicializado?

2.1.4 Impressdo de Ponteiros

Na linguagem de programacdo C, pode-se imprimir o valor
armazenado no ponteiro (um enderec¢o) usando a fungdo “printf” com
0 operador “%p" na string de formato.

A seguir sera apresentado um exemplo de codigo com a impressao
de ponteiros.

#include < {
int a; iostream.h>
int main()

int *pt; //declaracdo do ponteiro pt

pt = &a; // pt aponta para a

printf("O endereco de a é: %p\n", pt);
}

Os ponteiros também sdo utilizados para a alocacao dinamica de
memoria, muito utilizada para a implementacao de estruturas de dados

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

29

mais complexas.

2.2 Alocagao dinamica de memoria

Em C, pode-se alocar dinamicamente memaoria durante a execucao
de um programa, e tal alocacdo pode ser feita com a funcdo malloc.
Ja, para a liberagao de memoria utiliza-se a fungao free, e no exemplo
qgue se segue, pode-se observar o uso de ambas:

#include <stdlib.h>
#include <stdio.h>

int main()

{

int *pt;

pt = (int*)malloc(sizeof(int));

/I Aloca meméria necessaria para um inteiro e coloca em 'pt' esse endereco.
if (pt == NULL) /Se nao existir memoria disponivel

printf("Memoria insuficiente.");

}

printf("Enderecgo de pt: %p\n", pt);

*pt=5;

printf("Conteudo de pt: %d\n", *pt); // Imprime o valor 5
free(pt); // Libera a memoria alocada para o ponteiro
system("PAUSE");

Estudados os conceitos mais importantes relacionados a utilizacao
de funcdes, ponteiros e alocacao dinamica de memoria, agora € O
momento de aprendermos sobre os registros, muito utilizados para a
implementacado de pilhas, filas ou arvores dinamicas.

2.3 Registros

Na Unidade 2, o estudo sera pautado em vetores, que sao estruturas
de dados homogéneas e que, basicamente, armazenam varios valores,
porem, todos de um mesmo tipo. No entanto, o que fazer quando se
tem colecdes de dados que possuem tipos diferentes, como uma ficha
de cadastro de clientes?

Uma ficha de cadastro pode possuir alguns campos, COmMo:
Nome: string

Endereco: string

Telefone: string

30 U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

Salario: float
|[dade: int

Para resolver esse problema existem os registros, que "sdo conjuntos
de dados logicamente relacionados, mas que podem possuir tipos
diferentes de varidveis, como: inteiro, real, string etc.” (MIZRAHI, 2006,
p.237). Um registro ou estrutura (struct) € um grupo de itens no qual cada
item possui um identificador proprio, sendo cada um deles conhecido
como um membro da estrutura. Um registro permite agrupar dados
de diferentes tipos em uma mesma estrutura (@ao contrario dos vetores
que possuem elementos de um mesmo tipo).

Cada componente de um registro pode ser de um tipo diferente
(int, char etc. Esses componentes sdo referenciados por um nome. Em
varias linguagens de programacao, uma estrutura € chamada ‘registro”
e um membro € chamado de ‘campo’, conforme Figura 1.7. Um
campo € um conjunto de caracteres com o mesmo significado.

Figura 1.7 | Elementos de um registro

— ——Registro
Endereco: .

Telefone: _ ___j____;,?‘;;,t:ampns
Salario: —

Fonte: Elaborada pelo autora (2017)

2.3.1 Declaracdo de um Registro

Geralmente, um registro ou struct € declarado apos a inclusao
das bibliotecas e antes do programa principal. A sintaxe basica da
declaracdo de um registro € mostrada a seguir:

struct <identificador>

{

<listagem dos tipos e membros>;

}

struct <identificador> <variavel>;

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

31

32

No exemplo a seguir, foi criado o registro “ficha_de_aluno” que
possui trés campos: nome, disciplina e media.

struct ficha_de_aluno

{
char nome[40];
char disciplina[20];
float media;

I

Depois de declarar o reqistro, precisa-se criar uma variavel que vai
utiliza-lo. No exemplo, € criada a variavel “aluno’, que é do tipo “ficha_
de_aluno”.

struct ficha_de_aluno

char nome[50];
char disciplina[30];
float media;

i

struct ficha_de_aluno aluno;

Para se referir a um campo de um registro, deve-se escrever O
nome do registro e 0 nome do campo separado por um ponto. Nos
exemplos a seguir, 0s campos do registro sdo acessados e inicializados
com valores fixos.

aluno.nome = "Gideon”;
aluno.disciplina = “Programacao’;
aluno.media = 9.5;

A sequir, sera apresentado um programa que faz a utilizacdo de
registros.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

#include <iostream.h>
struct ficha_de_aluno //Criac&o do registro com 3 campos

char nome[50];
char disciplina[30];
float media;

aluno; //Criagéo da variavel aluno que sera do tipo struct ficha_de_aluno

int main()

{
printf("\nDigite 0 nome do aluno: ");
gets(aluno.nome);
printf("\nDigite o nome da disciplina: ");
gets(aluno.disciplina);
printf("\nDigite a media: ");
scanf("%f", &aluno.media);
printf("\n\n **** Dados da Struct ****\n\n"); /Impress&o dos campos da struct
printf("Nome do aluno: %s", aluno.nome);
printf("\nDisciplina: %s", aluno.disciplina);
printf("\nMedia: %f”, aluno.media);

2.3.2 Comando Typedef

Os registros podem ser tratados como um novo tipo de dados
(TENEMBAUM et al, 2004, p. 17). Para isso € utilizado o comando
typedef. Por exemplo:

typedef struct ficha_de_aluno aluno;
aluno 3, b;

Depois dessa definicao, pode-se passar a dizer "aluno” ao inveés de
‘struct ficha_de_aluno”.

2.3.3 Registros e Ponteiros

Cada registro tem um endereco de memoria e pode-se imaginar
que esse endereco € o de seu primeiro campo. Comumente, €
utilizado um ponteiro para armazena-lo e, nesse caso, esse ponteiro
aponta para o registro. Por exemplo:

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

33

34

aluno *pt;// pt € um ponteiro para o registro ficha_de_aluno
aluno a;

pt = &a; // agora pt aponta para a

(*pt).media = 9.3; // tem o mesmo resultado que a.media = 9.3

A expressao: pt->media é equivalente a (*pt).media = 9.3, sendo
muito mais utilizada.

2.4 Recursividade

A recursividade é uma ferramenta de programagdo muito
poderosa, sendo um recurso bastante empregado em linguagens
de programagao para a solugao de problemas computacionais
complicados ((TENENBAUM: LANGSAM; AUGENSTEIN, e esta
diretamente relacionada ao conceito de fungao e a sua implementacao.
Essa ferramenta pode ser usada sempre que for possivel expressar
a solucdo de um problema em funcdo do proprio problema. Para a
implementacdo de programas recursivos usa-se um procedimento
que permite dar um nome a um comando, © qual pode chamar a si
proprio.

Um exemplo muito utilizado para a explicacao de recursividade € a
definicao matematica de uma funcao fatorial, simbolizada pelo sinal de
exclamacdo (). O fatorial de um numero inteiro positivo n é definido
como o produto de todos os inteiros entre esse numero n e 1. Por
exemplo, o fatorialde 6 é iguala: 6 *5* 4 * 3* 2 * 1 = 720. O fatorial de
Oeltem valoriguala l

Algumas regras matematicas:

. n=1sen=0

. nN=n*n-1)*n-2)*.*1Lsen>0

Assim, o calculo do valor do fatorial do numero 6 pode ser realizado
da sequinte forma:

Fatorial(6) = 6 * Fatorial(5)

(
(

Fatorial(5) = 5* Fatorial(4)
Fatorial(4) = 4 * Fatorial(3)
Fatorial(3) = 3 * Fatorial(2)
Fatorial(2) = 2 * Fatorial(1)
Fatorial(l) =

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

Note que o fatorial do numero 6 foi obtido através do calculo do
fatorial do numero 5, que foi obtido atraves do calculo do fatorial de 4,
e assim por diante.

Para evitar qualguer abreviatura e um conjunto infinito de definigdes,
pode-se apresentar um algoritmo que aceite um inteiro n e retorne o
valor de seu fatorial (TENEMBAUM et al., 2004, p. 133).

O trecho de programa a seguir € chamado iterativo, pois requer a
repeticao explicita de um processo até que determinada condicdo seja
satisfeita.

int fatorial(int n) /Func&o recursiva que calcula o fatorial

int fati;

if (n<=1) { //Caso base: fatorial de n <= 1 retorna 1
return 1;

else {
fati = n * fatorial(n-1); /Chamada recursiva
return (fati);

}
int main()

int numero,f;

printf("Digite um numero: ");
scanf("%d",&numero);

f = fatorial(numero); //chamada da fungéo fatorial
printf("Fatorial = %d",f);

system("PAUSE"),

Nota-se que o meétodo interativo € mais simples e rapido. A
recursividade pode ser usada para a resolucdo do problema do
calculo do fatorial de um numero, assim como pode ser empregada
para a resolucdo de outros problemas, principalmente problemas
Mmatematicos.

(%) Para saber mais

Muitos problemas tém a seguinte propriedade: cada instancia do
problema contém uma instancia menor do mesmo problema. Dizemos
que esses problemas tém estrutura recursiva, € no link a seguir vocé
pode acessar a um otimo conteudo sobre recursividade.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

35

36

Disponivel em: <http://www.ime.usp.br/~pf/algoritmos/aulas/recu.
html>. Acesso em: 12 ago. 2017.

E, assim como no link anterior, o video a seguir explica detalhadamente
0 assunto; exibe varios exemplos, faz a comparagao de uma fun¢do ndo
recursiva com uma funcao recursiva e demonstra o comportamento da
funcao recursiva utilizando a pilha de execucao.

Disponivel em: <https://www.youtube.com/watch?v=Vg4NhWTCWs|>.
Acesso em: 12 ago. 2017.

Nesta secao, vocé aprendeu sobre ponteiros, que possuem como
conteudo o endereco de memaria de outra variavel; foi apresentado(a)
a alocacdo dinamica de memoria, através de demonstracdes de
funcdes para a alocacao e liberacdo de memaoria de um computador.
Vocé também aprendeu sobre 0s registros, que possuem a capacidade
de armazenar cole¢cdes de dados de diferentes tipos e, também, sobre
O conceito de recursividade como uma ferramenta de programacao
muito poderosa e empregada para a resolucao de problemas
computacionais complexos.

Atividades de aprendizagem

1. Considerando os conceitos sobre ponteiros e operadores unarios, analise
o trecho de codigo a sequir:

inta;

a=10;

int& b = a;

printf("\n%d", a);

printf("\n%d", b);

printf("\n%d", &a);

printf("\n%d", &b);

Qual sera a sequéncia de valores que serao impressos na tela?

Obs.: Considere que o endereco de memoria da variavel "a" é AE14Z.
a) 10, 10, AE14Z, AE14Z.

b) AE14Z, AE14Z, 10, 10.

c) 10, AE14Z, 10, AE14Z.

d) AE14Z, 10, AE14Z, AE147Z.

e) 10, 10, 10, 10.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

2. Os registros sdo utilizados quando ha a necessidade de armazenamento
de informagdes que possuem dados de diferentes tipos. Implemente um
programa C que utilize um registro para armazenar as seguintes informagdes
de um livro: codigo e quantidade de paginas. Vocé pode inicializar os
campos desse registro no programa principal. Para exibir os seus dados, crie
uma funcao chamada “exibir”.

Fique ligado

Nesta unidade, vocé comecou seu estudo aprendendo sobre os
principais conceitos relacionados as Estruturas de Dados por meio
de analogias com o seu cotidiano; em seguida, foi apresentado(a) a
definicao de funcdes e soube como elas podem ajudar para que O
codigo de um programa figue mais compreensivel e organizado. Vocé
aprendeu que uma funcao pode retornar apenas um valor e que se
houver a necessidade de que os valores das variaveis sejam alterados
no programa principal, deve passar esses valores por referéncia;
soube O que sao ponteiros e como eles sao fundamentais para a
implementacao de estruturas de dados dinamicas, ja que armazenam o
endereco de memoria de outras variaveis, e, por fim, soube o conceito
e a importancia de recursividade e como essa ferramenta pode ser Util
para se implementar funcdes complexas e que exigem maior carga
computacional.

Para concluir o estudo da unidade

Na Computacao, a Estrutura de Dados € utilizada para resolver a
maioria dos problemas complexos relacionados a programacdo, e €
de extrema importancia conhecer e saber implementar as estruturas
basicas para armazenamento de dados a fim de uma maior eficiéncia
e rapidez na execuc¢ao dos programas.

Saber qual o tipo de estrutura de dados que deve ser implementado
para a resolucao de um problema especifico é de extrema importancia,
mas, para isso, vocé deve primeiramente entender suas caracteristicas
e adquirir habilidades para a sua implementacdo em uma linguagem de
programacao. Nesta unidade, algumas técnicas de programacao em C
foram apresentadas e € fundamental que vocé pratique os conceitos
estudados, principalmente sobre ponteiros e funcdes. Tente exercitar
e replicar os exemplos que foram estudados, assim como desenvolver
Nnovos programas utilizando essas técnicas de programacao em C.

U1 - Algoritmos e seus tipos de representagédo e estrutura de dados

37

38

Atividades de aprendizagem da unidade

1. Para se programar em qualquer linguagem s3o utilizadas variaveis para o
armazenamento de dados. Cada variavel possui um tipo de dado especifico,
dependendo de sua finalidade; e em relacdo a tais tipos, analise as seguintes
afirmativas:

() O tipo de dados na perspectiva computacional € entendido como métodos
de interpretagdao da memoria do computador, ou seja, o que ele pode fazer.
(1) Se o tipo de dados for dissociado do computador ou da maquina, ele é
chamado de Tipo Abstrato de Dados — TAD.

() A Estrutura de Dados (ED) € a maneira de se implementar um Tipo
Abstrato de Dados (TAD).

Assinale a alternativa correta.

a) Apenas a afirmativa Il esta correta.

b) Apenas as afirmativas | e Il estédo corretas.

c) Apenas as afirmativas | e lll estdo corretas.

d) Apenas as afirmativas Il e Ill estdo corretas.

e) As afirmativas |, Il e Ill estdo corretas.

2. Uma funcdo é um conjunto de instrucdes desenhadas para cumprir uma
tarefa particular e agrupadas numa unidade com um nome para referencia-
la. Considere o seguinte programa:

int Funcaol ()

{
inta, b, x;
printf ("Digite um numero: \n");
scanf("%d", &a);
printf ("Digite um numero: \n");
scanf("%d", &b);
X=a*Db;
printf("\nResultado = %d", x);
}
int main ()
{
Funcaol ();
system("PAUSE");
}

Em relagdo ao programa, analise as afirmativas e as classifique como
Verdadeiras (V) ou Falsas (F):

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

I) A funcdo desse programa é invocada no programa principal através do
comando “Funcaol ();".

I) Com a chamada de funcdo, a execugdo do programa principal para e a
funcdo € iniciada, criando duas variaveis do tipo inteiro.

1) Ao final da execucdo de todos os comandos da fungdo, a execugdo do
programa retorna a linha posterior, a chamada da fungao no programa
principal.

Assinale a alternativa que contém a sequéncia correta.

a) V-V-V.

b) F-V-V.

c) V-F-V.
d) V-F-F.
e) F-F-F.

3. A passagem por referéncia utiliza um operador, chamado de operador
unario de referéncia, e € simbolizado por “&". Considere as instrucdes:

inta;

int&x = a;

Em relacao a essas instrucdes, analise as afirmativas:

I) O operador &x = x indica que agora x € outro nome para a.

l) As operagdes nas duas varidveis (a e x) ndo tém o mesmo resultado.

1) O operador "&" faz referéncia ao conteudo de uma variavel.

IV) Uma referéncia ndo é uma cdpia da varidvel a qual se refere, mas sim, a
mesma variavel sob diferentes nomes.

Assinale a alternativa correta:

a) Apenas a afirmativa | estd correta.

b) Apenas as afirmativas | e IV estao corretas.

)
c) Apenas as afirmativas | e lll estdo corretas.
d) Apenas as afirmativas Il e lll estdo corretas.
e) As afirmativas I, I, lll e IV estdo corretas.

4. Nesta unidade, foi estudado o conceito de registro, que armazena varios
campos com tipos de dados diferentes. Considere o seguinte programa:
#include <iostream.h>

typedef struct {
int matricula;
char nome[100];
float notal;
float nota2;

} Aluno;

U1 - Algoritmos e seus tipos de representagédo e estrutura de dados

39

40

int main()
{
Aluno alunos(3];
printf("Dados: nome, matricula, notal, nota2\n");
for(inti=0; i< 3; i++){
printf("\nInforme os dados do aluno(%i): ",i+1);
scanf("%s %i %f %f",alunoslil.nome, &alunoslil.matricula,
&alunoslil.notal, &alunoslil.nota2);

printf("\nMatricula\tNome\tMedia\n");
for(int i=0; i < 3; i++) {
printf("% f\n",alunoslil.matricula,alunosli.nome, (alunoslil. notal +
alunosli]. nota2) / 2);

}

system("PAUSE");

Considerando o cddigo apresentado, qual a finalidade desse programa?
a) Encontrar a menor média de um aluno.

b) Encontrar a maior média de um aluno.

c) Calcular e exibir as médias de trés alunos.

d) Encontrar os valores pares das matriculas dos alunos.

e) Encontrar os valores impares das matriculas dos alunos.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

Referéncias

JUNIOR, Dilermando Piva; et al. Estrutura de Dados e Técnicas de Programagédo. Rio de
Janeiro: Elsevier-Campus, 2014.

MIZRAHI, Viviane Victorine. Treinamento em linguagem C++. S&o Paulo: Makron, 2006.

TENENBAUM, Aaron M.; LANGSAM, Yedidyah; AUGENSTEIN, Moshe J. Estruturas de
dados usando C. Sdo Paulo: Pearson Makron Books, 2004.

VELOSO, Paulo; et al. Estrutura de dados. Rio de Janeiro: Campus, 1986.

U1 - Algoritmos e seus tipos de representagéo e estrutura de dados

41

42 U1 - Algoritmos e seus tipos de representacdo e estrutura de dados

Unidade 2

Tipos e estruturas de dados

Nathalia dos Santos Silva

Objetivos de aprendizagem

Nesta unidade, vocé sera apresentado aos tipos de dados
pertinentes ao desenvolvimento de sistemas e a suas caracteristicas
principais. O objetivo € que vocé conheca esse tema com detalhes
e, a partir disso, possa tomar boas decisdes em seus projetos, no que
tange a escolha e definicao da estrutura de dados utilizada.

Vocé também conhecera os tipos de dados existentes e aqueles
possiveis de serem implementados na linguagem C - uma linguagem
popularmente conhecida e que serve de base para outras - bem
como 0s comandos, as funcdes e a sintaxe dessas implementagdes.

Por fim, ao conhecer os tipos de dados abstratos e compostos,
homogéneos e heterogéneos, vocé sera capaz de criar estruturas
adequadas para seus programas utilizando dados primitivos.

Secdo 1| Vetores

Na Secdo 1, estudaremos os vetores - uma estrutura de dados vastamente
utiizada e disponivel em praticamente todas as linguagens de programacao.
Sua ampla utilizacdo se deve as vantagens de representacao, que também serdo
abordadas, € ao fato de ser uma estrutura aplicavel em diversos tipos de dados
primitivos.

Secdo 2 | Matrizes

Na Secdo 2, estardo presentes os conceitos envolvendo matrizes (que
s30 extensdes dos vetores e muito uUteis em aplicagcdes comerciais), uma vez
que sao utilizadas em agrupamento de dados com mais de uma referéncia de
classificacdo, e em aplicacdes de processamento de imagens ou outras estruturas
multidimensionais.

Secdo 3 | Tipos de Dados

Na Secao 3, veremos tipos de dados adicionais criados para atenderem uma
demanda de maior organizacdo na manipulacao de dados, classificados conforme
o nivel de detalhes e especificacdes que carregam, passando por dados abstratos,
compostos e heterogéneos.

Introducao a unidade

Esta unidade traz os conceitos sobre 0s principais tipos avancados
de dados e de como manipula-los, bem como sua sintaxe, por meio
da linguagem de programacgao C. Vamos nos aprofundar nos tipos de
dados avancados, além daqueles dados primitivos que voceé ja estudou,
com o objetivo de abranger uma classe maior de representacao para
serem utilizados em problemas reais.

Desde o surgimento dos computadores e sistemas de informacao,
0s tipos de dados existentes tém evoluido, a grande maioria deles sao
muito funcionais e, por isso, estao descritos nesta unidade.

As operacdes que realizamos por meio dos comandos de uma
linguagem de programagao estdo diretamente relacionadas as
operacOes suportadas pelos dados que escolhemos, por isso, €
importante que conhecamos as possibilidades e limitacdes dos tipos
de dados (EDELWEISS; GALANTE, 2009).

Como os dados sao a base dos sistemas de programacao, eles
devem estar inseridos em nossas escolhas quanto a definicao dos
aspectos de implementacao, até¢ mesmo por influenciarem na
simplicidade, complexidade e na organizagdo do codigo.

Algumas representacdes sao Obvias e Ndo causam duvidas, como
o tipo int escolhido para um contador, o tipo float para altura de uma
pessoa, entre outros frequentemente utilizados; entretanto, algumas
informacdes podem necessitar de uma pequena avaliacao para serem
bem representadas, por exemplo: a data de nascimento € um dado
numeérico? E interessante que eu a imprima no formato —/—/—? Ela
deve ser decomposta em dia, més e ano para algum calculo de
verificacdo de idade?

As respostas para essas perguntas podem variar conforme a
necessidade do projeto e influenciar na escolha do tipo de dados. Por
exemplo, se a data for utilizada para algum calculo, € interessante que
ela seja numérica, se for s6 um dado informativo, pode ser um string,
e ela pode, inclusive, ser armazenada no formato para impressao.
Seguindo o mesmo exemplo, caso fosse necessario, fazer um calculo
para determinar aidade de uma pessoa, ou ainda caso fosse interessante
apresentar a data em formatos diferentes, o ideal seria armazenar os

valores da data em trés variaveis, e nao somente uma contendo tudo.

Visto isso, a decisdo sobre a escolha dos dados deve ser tomada
conforme a necessidade levantada, e ainda, deve buscar a solucao
menos custosa quanto a utilizacdo de memaoria, a0 mesmo tempo em

que garanta produtividade em seu desenvolvimento (SZWARCFITER;
MARKENZON, 2015)

Secaol

Vetores
Introducdo a secao

Vocé ja observou como as construgcdes verticais, como edificios,
permitem agrupar um numero maior de moradores em um mesmao
endereco (rua e numero)? A estrutura de vetores € muito semelhante
a essa forma de alocacdo! Com um mesmo identificador, ou seja, o
nome de variavel, € possivel referenciar um maior conjunto de dados,
desde gue sejam de mesmo tipo. E como os apartamentos, os vetores
possuem uma organizagao interna.

Os vetores sdo estruturas de dados comumente utilizados para
melhor organizar variaveis relacionadas entre si conceitualmente; por
serem versateis, podem admitir diversos tipos primitivos. Esta secao
abordara como sao tratados os vetores na linguagem C, sua sintaxe,
0s principais comandos e as operacdes permitidas sobre esses dados.

1.1 Sintaxe para declaracao de Vetores

Os vetores permitem que dados de mesmo tipo e mesmo
significado conceitual sejam agregados por um mesmo nome de
variavel (PEREIRA, 2016), como o exemplo citado dos edificios.
Internamente, o responsavel pela organizacao e identificagcao de cada
item € o indice, que deve sempre ser um numero inteiro, ou seja, O
int. No entanto, quanto ao tipo de dados do vetor, esse pode ser int,
float, string, double, bool ou char; ou seja, 0s tipos de dados primitivos
basicos aceitos pela linguagem C.

Os vetores também sdo conhecidos como estruturas de dados
estaticas, pois seu tamanho permanece o mesmo em tempo de
execugdo (TENENBAUM; LANGSAM; MOSHE, 1995).

Imagine: se pudessemos descrever fisicamente um vetor, ele teria a
forma ilustrada na Figura 2.1:

U2 - Tipos e estruturas de dados

47

Figura 2.1 | Vetor "num”
num

Posigdo
0 1 2 3 % [(ndice)

Fonte: elaborada pela autora.

Para obtermos o vetor da Figura 1.1, iniciaremos pela declaracao do
vetor:

int num[5];

Neste exemplo foi criado um vetor de 5 posicdes para inteiros,
chamado num. Podemos afirmar que esse vetor € do tipo int. e iniciar
com um vetor ja preenchido, como na Figura 2.2:

Figura 2.2 | Vetor "num” preenchido
num
|

10 | 15 | 20 | 25 | 30

} Posigdo
(indice)

Fonte: elaborada pelo autor.

Para isso, devemos implementar o seguinte codigo:
int num(5] = {10, 15, 20, 25, 30};

Um vetor pode ter qualgquer valor inteiro em cada posicao alocada.
Para demonstrar a alocacdo de vetores de outros tamanhos e tipos,
mantemos a mesma sintaxe com os respectivos parametros:

48 U2 - Tipos e estruturas de dados

float valor [10];
char resposta [3];

Esse trecho implementa a declaracao de 2 vetores, sendo a primeira
linha o vetor de 10 elementos em ponto flutuante com identificado
valor; o segundo, um vetor resposta para armazenar 3 caracteres.

Da mesma forma que variaveis podem ser declaradas e atribuidas
em um mesmo comando, vetores tambem:

float valor [10] = {3, 4};
char resposta [3] = {a’, 'c, 'd’, 'a’, 'b'};

Observe que podemos tentar atribuir mais ou menos elementos
que a quantidade declarada no vetor, e isso ndo foi impedido pelo
compilador, 0 que € uma desvantagem, pois pode causar erros de logica
OU acessar espacos indevidos de memoria, e tudo ser imperceptivel ao
programador.

Um vetor tambeém pode ter seu tamanho declarado atraves de seus
elementos:

intn[1={1, 2,4, 8,10, 12};

Outra desvantagem desse tipo de declaracao € ndo ser explicita a
quantidade de elementos do vetor.

1.2 Sintaxe para acessar elementos do vetor

E importante ressaltar que um vetor de tamanho n possui posicdes
determinadas pelos indices de O ao n-1; ou seja, um vetor de 5
posicées manipula do indice 0 ao 4; o indice, entdo, é o valor que
indica a posicao que queremaos acessar No vetor:

int nun[5] = {10, 15, 20, 25, 30};

X =num [3];

U2 - Tipos e estruturas de dados

49

50

Nesse comando, estamos atribuindo a variavel x o conteudo do
vetor na posicao 3, ou seja, a 42 posicao da esquerda para direita, que
€ igual ao valor 25.

Podemos, tambem, inserir um valor em um elemento especifico do
vetor, alias, € a Unica maneira de alterarmos o valor do vetor ao longo
do codigo, depois de sua declaracdo. A sintaxe € analoga a atribuicao
de dados simples:

nun(2] = 17;

Essa sintaxe representa a acao de inserir o valor 17 na posigao 2 do
vetor.

@ Para saber mais

Os valores contidos nos vetores permitem as mesmas operacdes
que seus tipos, e como sdo versateis, permitem varias possibilidades
a partir da logica com seus indices e valores. Vocé pode treinar mais
sobre as operacdes em vetores: <https://www.ime.usp.br/~macmulti/
exercicios/vetores>. Acesso em: 10 ago. 2017.

9 Questao para reflexao

Nos exemplos apresentados foram criados vetores de inteiros e ponto
flutuante. Podemos criar vetores de strings em linguagem C? O conceito
de vetor sera mantido?

1.3 Sintaxe com lagos para percorrer o vetor

Como podemos perceber, em todas as operacdes que fazemos
com vetores em C é feito elemento a elemento, entdo, sempre
utilizaremos um lago para percorrer Os vetores atraves dos elementos,
um a um, por meio de um indice inteiro e sempre representado por i.

Também, e através do lagco que imprimimos os valores dos
elementos do vetor na tela, um a um, controlado pelo seu indice.

Pensando em uma boa pratica de programacao, o ideal € utilizar o

U2 - Tipos e estruturas de dados

comando define, dada a necessidade de se alterar o tamanho do vetor
e de todas as funcdes a ele pertinentes, alteramos este valor somente
uma vez no inicio do codigo, como no codigo da Figura 2.3, em que o
controle do laco segue automaticamente o valor do comando define:

Figura 2.3 | Codigo de insergdo e impressédo de valores nos vetores
#include <stdlib.h>
[#define TAMANHO 10 |
int main()

{
int inteiros[TRAMANHO];
for{i = 0; i < TRAMRNHO; i++)
{
inteiros[i] = i:
1
for{i = 0; i < TAMANHO; i++)
{
printf(™ %d ", inteiros[i]);
1
return 0;
1

Fonte: elaborada pela autora.

Como explicado, o processo de preenchimento do vetor, seus
calculos e a impressdo na tela sdo feitos elemento a elemento,
normalmente por meio de um lago for.

A sequir, traremos um codigo (na Figura 2.4) que preenche
diferentes vetores, para que vocé conheca algumas possibilidades e,
posteriormente, possa adapta-las conforme sua necessidade.

U2 - Tipos e estruturas de dados

51

52

Figura 2.4 | Codigo de insercdo e impressdo de valores nos vetores

1 #include <stdio.h>

2 #include <stdlib.h>

3 #define TAMANHO 10

4

5 int main ()

6 {

7 int inteiros [TAMANHO] ;

8 int zeros[TAMANHO] ;

9 int quadrado [TAMANHO] ;

10 int dobro[TAMANHO] ;

11 int i;

12

13 for (i = 0; i < TAMANHO; i++)
14 {

15 inteiros[i] = 1i;

16 zeros[i] = 0;

17 quadrado [1] = i*i;

18 dobro[i] =i * 2;

19 }

20

21 printf (" Vetores: \n ");

22 printf (" Indice - Zeros - Inteiros - Quadrado - Dobro\n ");
23

24 for (i = 0; i < TAMANHO; i++)
25 {

26 printf ("% - %d --%d -- % -- % ",
27 i, zeros[i], inteiros[i], quadrado[i], dobrol[i]);
28 }

29

30 return 0O;

31 }

32

Fonte: elaborada pela autora

Exemplo 2.1:

Considere uma loja que paga uma comissdo de 5% aos seus
funcionarios e precisa calcular a comissdo de um ano, conforme as
vendas de cada um. Implemente um programa que atenda a essa
necessidade.

Como € um problema de diversos dados (comissao ao longo dos
12 meses) e possuem certa semelhanca e significado, podemos e
devemos utilizar vetores.

O cdodigo apresentado na Figura 2.5 apresenta a solucdo em C para
esse problema.

U2 - Tipos e estruturas de dados

Figura 2.5 | Solucdo do Exemplo 1.1

#include <stdio.h>
#include <stdlib.h>
#define MESES 4
#define FILIAIS 3

int main ()

{

float vendas[MESES] [FILIAIS];
float receber[MESES] [FILIAIS];
float comissao = 0.05f;

int i,3j;

for(i = 0; i < MESES; i++)
for(j = 0; j < FILIAIS; j++)
{
printf ("\nDigite as vendas do %do mes, da filial %d: ", i+l,
scanf ("$f", &vendas([i][j]):
receber[i] [J] = vendas[i] [j] * comissao;

}
printf ("\nOs valores a receber sao: ");

for(j = 0; j < FILIAIS; j++)
{
printf ("\nNa filial %d:", j+1);
for(i = 0; 1 < MESES; i++)
({
printf ("\n %.2f no %do mes;", receber[i] [j], i+1);
}
}

return 0;

Fonte: elaborada pela autora.

Atividades de aprendizagem

j+1)

1. Ao trabalharmos com vetores, precisamos saber controlar seus indices
- esse é um passo essencial. Sabendo disso, analise as afirmacdes a seguir:

| — A primeira posicdo de um vetor é sempre identificada por [0].
I = Um vetor de 5 posi¢cOes permite o acesso a sua ultima posi¢cao através
do indice [5].
Il = A soma dos elementos de dois vetores, A e B, é realizada pelo codigo
Al]l + B[].

Assinale a alternativa correta:
a) Somente | esta correta.

b) Somente Il esta correta.

c) Somente lll esta correta.

)
)
d)
)

Somente | e Il estdo corretas.

e) Somente | e Il estdo corretas.

U2 - Tipos e estruturas de dados 53

54

2. Bruno precisa de um programa que trabalhe com os dados de
sua pesquisa; precisa armazenar informag¢des sobre 100 amostras e,
posteriormente, fazer uma média aritmética delas. Assinale a alternativa
que contém a declaracdo adequada e correta das estruturas de dados que
ele usara:

a) int amostras[100] ; int media.

b) int amostras; char media[100].

c) float amostras[100] ; float media.

d) float amostras[100] ; int media.

e) char amostras[100] ; float media[100].

U2 - Tipos e estruturas de dados

Secao 2

Matrizes
Introducdo a secao

Vocé percebeu que vetores sdo muito Uteis para a programacao
de algoritmos ao agruparem diversos dados em uma estrutura de
variavel com o mesmo nome. Agora, saiba que podemos estender
esse comportamento e criar matrizes! Sao semelhantes aos vetores
em algumas caracteristicas basicas e possuem uma notacao que as
identifica como matrizes.

2.1 Sintaxe para declaracdo de matrizes

As matrizes podem ser abstraidas como vetores bidimensionais, ou
seja, um conjunto de dados de mesmo tipo organizados de maneira
estruturada e reconhecidos por um mesmo identificador. Como
estamos criando uma estrutura de dados de duas dimensdes, com
linha e coluna, precisamos de dois argumentos para dimensionar a
matriz e dois indices de controle.

Colocando um adendo no paragrafo anterior, a matriz pode ser
uma abstracdo de duas dimensdes para facilitar o entendimento dos
programadores, porque, em C, a matriz € armazenada e acessada de
maneira linear (MIZRAHI, 2008).

A sintaxe para declaragcao da matriz €:
int matriz [2] [3];

2.2 Sintaxe para manipulagao de matrizes

Como criamos lacos para acessar 0s elementos dos vetores, um a
um, com as matrizes € analogo, assim como as atribuicoes.

Vamos analisar, na pratica, como ficaria 0 nosso Exemplo 1.1 de
vendas e comissao, caso tivessemos mais de um vendedor, atraves da
Figura 2.6:

U2 - Tipos e estruturas de dados

55

Figura 2.6 | Codigo de matrizes

1 #include <stdio.h>

2 #include <stdlib.h>

3 #define MESES 12

4

5] int main ()

6 {

7 float vendas[MESES];

8 float receber[MESES];

9 float comissao = 0.05f;
10 int i;
11
12 for(i = 0; i < MESES; i++)
13 {

14 printf ("\nDigite as vendas do %do mes: ", i+l);
15 scanf ("%f", &vendas[i]);
16 receber[i] = vendas[i] * comissao;
17 }
18
19 printf ("\nOs valores a receber sao: ");
20
21 for (i = 0; i < MESES; i++)
22 {
23 printf ("\n %.2f no %do mes;", receber[i], i+l);
24 }
25
26 return 0;
27 }
28

Fonte: elaborada pela autora

Como toda atividade de implementacao, € sugerido que vocé
compile o programa e, entdo, faga alteracdes na logica conforme a
necessidade!

@ Para saber mais

Alguns programas, como o Scilab ou o Matlab, sdo desenvolvidos
para trabalharem especialmente com matrizes, dada a versatilidade
e aplicabilidade desse conceito tdo utilizado na programacgado! Vocé
pode conhecer mais sobre isso em: <http://www.mat.ufmg.br/~espec/
tutoriais/scilab>. Acesso em: 10 ago. 2017.

e Questdo para reflexao

Podemos ter matrizes com mais de 2 dimensdes?

56 U2 - Tipos e estruturas de dados

Atividades de aprendizagem

Para responder as questdes 1 e 2, considere o codigo a seguir:

#include <stdlib.h>
[#define TAMANHO 10 |
int main()

{

int inteiros[TAMANHO]:

for{(i = 0; i < TRAMANHO; i++)

{
}

inteiros[i] = i;

for{(i = 0; i < TAMANHO; i++)

{

printf(™ %d ", inteiros[i]):

1

return 0;

1. O mais importante na manipulacdo de matrizes é controlar seus lacos
e indices, sabendo disso, e com base no cddigo apresentado, assinale a

alternativa correta:

a) A matriz possui 6 elementos.
b) A matriz possui 20 elementos.
c) O valor impresso sera 2.

d) O valor impresso sera 6.

e) Sera impressa a matriz toda.

2. Ainda com base no codigo apresentado, assinale a alternativa incorreta:
a) O elemento matriz[0][0] ndo teve atribuicdo de valores.
b) O comando matriz[4][4] = 10 apesar de invalido pode ser aceito pelo

compilador.

c) O valor 9 ndo aparece na matriz em nenhum elemento.

d) O elemento matriz[3][4] é igual a 12.
e) Apds o comando x = matriz[2][2], x passa a valer 4.

U2 - Tipos e estruturas de dados 57

58

Secao 3

Tipos de Dados
Introducgdo a secao

Um tipo de dado € um conceito que reune informacdes sobre um
conjunto que pode ser representado com aquelas especificacdes, por
exemplo, o tipo char reune especificacdes de caracteres.

Como boa parte dos conceitos computacionais, eles estdao
diretamente envolvidos com o hardware do computador e com
propriedades logicas sobre ele, ou seja, as operacdes e calculos
suportados.

O conceito que discutiremos nesta secdo € uma especificacdo de
COmMo UM novo tipo é representado por objetos de tipos de dados ja
existentes e de como sera manipulado pelo software (TENENBAUM:;

LANGSAM; MOSHE, 1995).

Esta secdo apresenta os tipos de dados que podemos encontrar
para implementar solucdes através de algoritmos em linguagem
C e, portanto, a dividimos em Dados do tipo: Abstrato, Complexo e
Heterogéneo, e vamos discutir cada um deles.

3.1 Tipos de Dados Abstratos

Do inglés Abstract Data Types (ADT), ou sua sigla em portugués TDA,
€ uma representacao de dados acompanhada das operagdes que se
pode fazer com eles (DEITEL; DEITEL, 2011). As varidveis passam a ser
mais do que acessorios na programacgao, elas descrevem o cenario a
ser modelado, isso €, estdo mais proximas em descrever o mundo real
e menos voltadas aos detalhes especificos de implementacao.

O conceito de Abstracao de Dados € muito semelhante a uma
caixa-preta com entrada e saida de informacdes, justamente por
representar de maneira fiel as necessidades levantadas e o que precisa
ser realizado, sem detalhar como o compilador trata as particularidades
dos dados em si.

Deitel e Deitel (2011) exemplificam que o computador ndo tem
uma referéncia de significado para os tipos matematicos como int,
float ou double, por exemplo; ele apenas possui mecanismos para
representar e processar informacdes pertinentes a tais dados de uma

U2 - Tipos e estruturas de dados

maneira que sejam viaveis e fisicamente capazes de relacionar com as
caracteristicas do que conhecemos que seja um numero inteiro ou um
ponto flutuante, de precisao simples ou dupla, respectivamente.

Sempre que esse tipo € escolhido em nossa implementacao,
devemos conhecer as operacdes que podemos realizar sobre ele e
se possuem alguma restricao ou limitagao, ja que nem todos os tipos
matematicos podem ser implementados em todas as maquinas a
partir dos programas (TENENBAUM; LANGSAM; MOSHE, 1995). Entao,
podemos entender que os tipos de dados abstratos sao maneiras de
representar os conjuntos que conhecemos No Mundo real em um
nivel de abstracdo que seja adequado para © computador.

Adicionalmente, utilizamos tipos de dados abstratos em estruturas
de dados como vetores, filas e pilhas, detalhadas ao longo deste livro,
com 0s quais Ndo precisamos Nos preocupar devido a forma como
esses dados sao operados pelo hardware, sO precisamos saber utilizar
as operacdes, como inserir ou retirar, sobre os elementos.

Em implementacdes com C, vocé pode criar tipos abstratos com
structs e os tipos typedef; ja em C++, C# ou Java vocé também pode
criar seus proprios tipos abstratos atraves de classes.

3.2 Tipos Compostos de Dados

Os tipos compostos de dados sdo formados a partir dos tipos
primitivos de dados, ou seja, daguelas estruturas mais simples da
linguagem, como os tipos int, float double, ou char, organizados e
combinados de maneira a formarem uma nova estrutura, também sao
conhecidos como tipos derivados (PINHEIRO, 2012).

Dois desses tipos sao o vetor e a matriz, que vimos anteriormente.
Eles sdo uma estrutura de dados homogéneos, ou seja, todos seus
integrantes sao do mesmo tipo, e possuem uma capacidade limitada
de elementos; no entanto, por limitada ndo entendamos como pouca
OU pequena, € sim como um valor conhecido.

String € um outro tipo de dado composto, pois trata-se de um
conjunto ordenado de caracteres e, por ser um vetor em C, € tratada
Ccomo ponteiro.

As strings podem armazenar uma série de caracteres entre letras,
numeros, caracteres especiais, sequéncia de caracteres com espacos,
formando uma frase etc. Por ser tratada com um dado somente, dai
sua definicdo de dado composto.

O tamanho da string pode ser de qualquer comprimento; ela deve,

U2 - Tipos e estruturas de dados

59

sempre, terminar com o caracter nulo (\0', leia-se barra invertida zero) e
se tentarmos armazenar na string um valor de caracteres maior aquele
declarado, os dados sobressalentes irao sobrescrever outros dados em
posicdes da memoria que sucedem o local de memaoria alocado para
essa string (DEITEL; DEITEL, 2011).

Podemos definir a string da seguinte maneira:

char nome[] = "Nathalia";
char nomeItem[] = {'H1", g'; 'y 'h', D'}:

printf ("%s\n", nome):
printf ("$s\n", nomeltem);

A saida resultante sera:

Nathalia

Nath

Seesquecermoso\0'ao finaldessa declaracdo de chars (na segunda

declaracdo), a variavel contera dados de memodria ndo desejaveis, o
que tambem, usualmente, chamamos de lixo de memoria.
Quanto a entrada de dados, o comando scanf nao |é espacos ou

mudancas de linha e é limitado em 19 caracteres. Ou seja, para um
sobrenome com dois nomes, Nao seria possivel adota-lo:

char nome[] = "Nathalia™;
char sobrenome[30];

scanf ("%$s", sobrenome);

printf ("$s\n", nome):
printf ("%s\n", sobrenome):

Para uma entrada no scanf no formato “da Silva“, o tipo string so
armazenaria o ‘da’, sendo assim, precisamos de funcdes especificas
que tratem strings, como getchar, ou outras contidas na biblioteca
stdio.h (MIZRAHI, 2008):

60 U2 - Tipos e estruturas de dados

i finclude <stdio.h>

2 #include <stdlib.h>

3

4 int main ()

5 {

6 char lido;

7 char frase[50];

8 int i=0;

9

10 printf ("Digite a frase:");
11

12 while ((lido = getchar()) != n')
13 {

14 frase[i++] = lido;

15 }

16 frase[i] = "\0';

17

18 printf ("A frase digitada foi:");
19 printf("%s", frase);
20
21 return O;
22 }
23

@ Para saber mais

O conteudo de strings € muito amplo e os comandos para manipula-
las sdo muitos, principalmente devido a flexibilidade de se trabalhar
com um vetor; alids, poderiamos ter um outro capitulo escrito somente
para lidar com as strings. No entanto, vocé pode conhecer mais sobre
0 assunto no livro C: como programar, de Paul Deitel e Harvey Deitel.

Um outro tipo composto de dados, que € utilizado na linguagem
C, € a estrutura, ou struct, também conhecida como registro; ela
possui um conjunto de membros, sendo cada membro um dado com
identificador proprio, também chamado de campo.

Pode ser declarado da seguinte maneira (TENENBAUM: LANGSAM:
MOSHE, 1995):

stroct{

char nome[15]:

char sobrenome[30]:;
} autorl, autorz;

U2 - Tipos e estruturas de dados

61

62

Sendo nome e sobrenome os membros da estrutura, e autorl e
autor? as variaveis criadas desse tipo. Como uma forma mais completa
e intuitiva, incentivando a melhor organizacao do codigo, também

podemos criar um nome para a estrutura, e assim declarar as estruturas
na linha seguinte:

struct nome_ completo{
char nome([l5]:

char sobrenome[30];

} autorl, autor2;

struct nome_completo autorl;

Observe que as duas declaracdes resultam no mesmao objetivo.

Ainda € possivel que criemos um tipo composto abstrato de dados,
isso €, apliqguemos os conceitos de TDA para obter esta estrutura:

typedef struct {
char nome[15]:;

char sobrenome[30];
} TDA NOME COMPLETO:

TDA NOME COMPLETO autorl, autor ZI;
Seus membros sao acessados da seguinte maneira:
autorl.nome = "Gisele™;

Criamos um programa gue imprime o0 nome completo e o0 nome
abreviado das pessoas - como utilizamos em referéncias bibliograficas

para autores de livros. Acompanhe e, se possivel, implemente o codigo
descrito na Figura 2.7:

U2 - Tipos e estruturas de dados

Figura 2.7 | Programa em C para operar structs

1 #include <stdio.h>
2 #include <stdlib.h>
3
4 int main ()
5 {
6 struct nome_completo{
7 char nome[15];
8 char sobrenome[30];};
9
10 struct nome_ completo autorl, autor2;
11
12 char lido, primeiraletra;
13 int i = 0;
14
15 printf ("Digite o primeiro nome do autor: \n");
16 while ((lido = getchar()) != "\n')
17 autorl.nome[i++] = lido;
18 autorl.nome[i] = "\0';
19 primeiraletra = autorl.nome[0];
20
21 printf("Digite o sobrenome do autor: \n");
22 i=0;
23 while ((lido getchar()) !'= "\n')
24 autorl.sobrenome [i++] = lido;
25 autorl.sobrenome[i] = "\0';
26
27 printf ("Nome completo do autor: \n");
28 printf ("%$s %s", autorl.nome, autorl.sobrenome) ;
29 printf ("\nNome abreviado do autor: \n");
30 printf("%s, %c.", autorl.sobrenome, primeiraletra);
S
32 return 0;
33
34 }
35

Fonte: elaborada pela autora

9 Questdo para reflexao

E possivel e viavel criar um vetor de structs?

3.3 Tipos de dados Heterogéneos

Da mesma forma que criamaos structs com um unico tipo - No caso,
o tipo char -, poderiamos ter criado structs com o unico tipo int ou
float, e seriam todas consideradas structs homogéneas, ou seja, um
tipo de dados homogéneos. A0 mesmo tempo, se quisessemos criar
uma struct que contivesse tipos distintos de dados, como os tipos int

U2 - Tipos e estruturas de dados

63

64

e char, essa estrutura de dados passaria a ser uma estrutura de dados
heterogéneos, ou uma colecao heterogénea de dados (PEREIRA,
2016). Esse tipo de dados também é conhecido na linguagem C como
registro, e pode ser implementado como a definicdo a sequir, na Figura
2.8:

Figura 2.8 | Struct de dados heterogéneos

1 #include <stdio.h>

2 #include <stdlib.h>

3

4 int main ()

5 {

6 struct nome completo{

7 char nome[15];

8 char sobrenome[30];};

9

10 struct nome completo autorl, autor2;

11

12 char lido, primeiraletra;

13 int i = 0;

14

15 printf ("Digite o primeiro nome do autor: \n");
16 while ((lido = getchar()) != "\n')

17 autorl.nome [i++] = lido;

18 autorl.nome[i] = "\0';

19 primeiraletra = autorl.nome[0];
20
21 printf ("Digite o sobrenome do autor: \n");
22 i=0;
25 while ((lido = getchar()) != "\n')
24 autorl.sobrenome[i++] = lido;
25 autorl.sobrenome[i] = "\0';
26
27 printf ("Nome completo do autor: \n");
28 printf("%s %s", autorl.nome, autorl.sobrenome) ;
29 printf ("\nNome abreviado do autor: \n");
30 printf("%s, %c.", autorl.sobrenome, primeiraletra);
31

32 return 0;

33

34 }

35

Fonte: elaborada pela autora

U2 - Tipos e estruturas de dados

Repare que a grande vantagem desse tipo de dados € a organiza¢ao
que ele possibilita ao programador: os dados dos registros possuem o
mesmo prefixo. Aléem do mais, se houvesse a necessidade de cadastrar
diversos jogadores, e ndo fosse usado struct, teriamos uma quantidade
muito maior de variaveis para manipular.

Atividades de aprendizagem

1. (Adaptado de ENADE, 2011) O conceito de Tipo de Dados Abstrato
(TDA) é popular em linguagens de programacdo. Nesse contexto, analise as
afirmativas a seguir:

|. A especificagcdo de um TDA é composta das operacdes aplicaveis a ele, da
sua representacao interna, e das implementacdes das operagdes.

Il. Se S € um subtipo de outro T, entdo entidades do tipo S em um programa
podem ser substituidas por entidades do tipo T, sem alterar a corretude
desse programa.

lII. E possivel construir TDA a partir de dados compostos.

E correto apenas o que se afirma em:

2. Considere como base o programa implementado na Figura 2.7. O trecho
do programa que imprime o nome abreviado do autor poderia ter sido
implementado de uma outra maneira, ainda equivalente.

printf ("\nNome abreviado do autor:\n"):
printf("%s, %c", autorl.scbrenome, %%);

Analise as afirmativas a seguir e assinale aquela que apresenta o conteudo
correto no lugar dos simbolos:

a) autorl.nome[0].

b) nome[O].

c) autorl.primeiraletra.

d) autorl.primeiraletralO].

e) AutorQ.primeiraletrall].

U2 - Tipos e estruturas de dados

65

66

Fique ligado

Voceé viu nesta unidade como os dados, em suas diferentes formas,
influenciam a programacdo e que os lipos existentes podem vir a
formar novos tipos de dados, sempre que nossa aplicacao necessitar.
Nao deixe de resolver os exercicios e se desafie a implementar os
exemplos! E a pratica dos conceitos que vai fazé-lo adquirir afinidade
com os tipos de dados e entender como utiliza-los.

Para concluir o estudo da unidade

Vocé deve estudar os conceitos sobre os tipos de dados, afinal,
eles explicam como sao formadas as diversas possibilidades que
encontramos quando nos referimos a dados. Embora a sintaxe e
as limitacdes acerca dos dados possam variar de linguagem para
linguagem, conhecer os conceitos em uma como a C permite que
vocé entenda melhor os outros tipos de dados de outras linguagens
derivadas, como C++ e C#.

Atividades de aprendizagem da unidade

1. Os elementos de um array sdo relacionados entre si pelo fato de que
possuem o0 mesmo e .

Assinale a alternativa que preenche corretamente as lacunas:

a) Tipo; identificador.

b) Dado; estrutura.

c) Tipo; valor.
)
)

d) Valor; identificador.
e) Dado; local na memoria.

U2 - Tipos e estruturas de dados

2. Considere o codigo a seguir:

al finclude <stdio.h>

2 finclude <stdlib.h>

3

4 int main()

S {

(3 int matriz[10][4];
7y int x = 6;

8

9 matriz[10] [4] = 45;
10

alal return 0;

12 }

Assinale a alternativa correta:

a) A linha 9 apresenta um erro.

b) O numero 10 é o conteudo da variavel matriz na parte alta.
c) X é o indice.

d) 45 é o conteudo de um elemento da matriz.

e) O elemento matriz[10][4] € igual ao elemento matriz[45].

3. Considere a declaracéo a sequir:

char nome[] = "Nathalia™;
char nomeItem[] = {'N', 'a', 't', 'h', '\O'}:

printf ("%s\n", nome):;
printf ("$s\n", nomeIltem) ;

Assinale a alternativa correta:

a) nomeltem(1] tem valor N.

b) nome[] & um dado do tipo primitivo.

c) nomeltem é uma matriz de 5 dimensdes.
d) A primeira impressdo na tela é somente N.
e) nome é um vetor de caracteres.

4. Analise as informacdes a sequir e classifique-as como verdadeiro (V) ou
falso (F):

() Um mesmo vetor armazena valores de tipos distintos.

() Uma mesma matriz armazena valores de tipos distintos.

U2 - Tipos e estruturas de dados 67

68

() Uma struct organiza valores de tipos distintos.
() Uma struct € um tipo de dado primitivo.
() Um vetor de inteiros é um tipo composto.

AF-F-V-F-V
b)F-V-V-F-V.
AQV-V-F-F-V.
AV-V-V-F-V.
QF-F-V-V-V

5. As operagdes que realizamos, por meio dos comandos de uma linguagem
de programacdo, estdo diretamente relacionadas as operacdes suportadas
pelos dados que escolhemos, por isso, € importante que conhecamos
as possibilidades e limitacdes dos tipos de dados (EDELWEISS; GALANTE,
2009).

Analise as alternativas a seguir e assinale a incorreta:

a) E possivel implementar um vetor de um tipo composto de dados.

b) Uma matriz € um elemento linear, porém composto.

c) Para trabalhar com tipo de dados abstrato devemos conhecer sua
estrutura interna.

d) Um tipo char é um dado primitivo, ja um tipo char[] é um dado composto.
e) Os indices de vetores e matrizes devem ser inteiros.

U2 - Tipos e estruturas de dados

Referéncias

DEITEL, Paul; DEITEL, Harvey. Como programar: em C. 6. ed. Sdo Paulo: Bookman, 2011.
692 p.

EDELWEISS, Nina; GALANTE, Renata. Estrutura de dados. Porto Alegre: Bookman, 2009.
MIZRAHI, Victorine Viviane. Treinamento em Linguagem C. Sdo Paulo: Pearson, 2008.

PEREIRA, Silvio do Lago. Estrutura de Dados em C: uma abordagem didatica. Sdo Paulo:
Erica, 2016. 184p.

PINHEIRO, FRANCISCO A. C. Elementos de programagao em C. Porto Alegre: Bookman,
2012.

SZWARCFITER, Jayme Luiz; MARKENZON, Lilian. Estruturas de dados e seus algoritmos.
3. ed. Rio de Janeiro: LTC, 2015.

TENENBAUM, Aaron M.; LANGSAM, Y.; MOSHE J. A. Estruturas de dados usando C. Séo
Paulo: Makron Books, 1995.

U2 - Tipos e estruturas de dados

69

Unidade 3

Estrutura de dados

Merris Mozer

Objetivos de aprendizagem

. Analisar e distinguir as estruturas de dados relacionados a
pilha, fila e listas;

. Entender a logica utilizada para a implementacao das pilhas,
filas e listas;

. Conhecer e aplicar ponteiros e alocacac dinamica de
memoria;

. Compreender sobre 0s algoritmos de pesquiisa;

. Compreender os conceitos relacionados a classificacao.

Secdo 1| Alocacdo dindmica de memoria

Esta € a primeira secao da nossa Unidade 3. Nela, nos apresentamos detalhes
sobre a alocacao dinamica, suas principais funcdes e conceitos relacionados
a ponteiros. Pode-se entender a alocacdo dinamica como alocacao de
espacos na memoria em tempo de execucdo do programa. Essa estrategia de
desenvolvimento permite que a quantidade de memoria, que esta sendo alocada,
possa ser aumentada ou reduzida, conforme necessidade.

Secdo 2 | Listas e seus casos especificos (pilha e fila)

Sendo dois dos conceitos mais usados, a pilha e a fila, ambas promovem a
organizacao dos elementos (chegada e saida). Para a fila, consideramos o critério
FIFO (do inglés first in first out), o primeiro item que entra € o primeiro elemento
que sai; e, para a pilha, o critério LIFO (do inglés last in, first out), o ultimo elemento
que chega € o primeiro elemento que sai. No entanto, para implementa-los, existe
uma serie de estratégias, e € o que mostraremos em detalhes nesta se¢do.

Secdo 3 | Algoritmos de pesquisa

Nesta se¢ao, abordaremos os algoritmos para pesquisa de uma determinada
informacao, seja em um vetor ou matriz. Existern metodos que tornam as buscas
mais eficientes; esses algoritmos, por exemplo, utilizam elementos que sao usados
para comparacao com os demais elementos do conjunto; logo, as pesquisas
podem retornar o valor procurado ou retornar nulo (caso o elemento ndo exista
no conjunto pesquisado). Para tanto, abordaremos os seguintes métodos de
pesquisa: sequencial, binario e interpolacao.

Secdo 4 | Classificacdo

Quando falamos em classificagdo, ou ordenacao, estamos lidando com um
dos ingredientes mais conhecidos na area de desenvolvimento de sistemas, cujo
objetivo € organizar um conjunto de informacdes semelhantes em uma ordem
crescente ou decrescente. Nesta se¢ao, abordaremos suas caracteristicas e seus
aspectos de forma global, bem como suas funcdes.

Introducao a unidade

Caro(a) alunof(a), seja bem-vindo(a) a disciplina Linguagem de
Programacgéo e Estrutura de Dados.

Quando falamos em desenvolvimento de sistemas, precisamos
pensar que a construcdo deve ser bem projetada, desse modo, a
estrutura de dados traz os conceitos e a compreensdo de cComo oS
dados devem ser armazenados e recuperados. A fim de mostrar essa
importancia, trazemos, nesta unidade, os conceitos relacionados a
alocacao dinamica de memoria, algoritmos de pesquisa, classificacdo,
pilhas, filas e listas.

A alocacao dinamica representa um procedimento que solicita
0 andamento do programa e faz uso da memoria dele enquanto é
executado; para isso, sdo usados diversos metodos e conceitos, cujo
detalhamento vocé podera conferir na Secao 1.

Quando analisamos as aplicacdes existentes, dois dos conceitos
mais usados € o de pilha e fila. Ambas promovem a organizacao dos
elementos (chegada e saida). Para a fila, consideramos o critério FIFO
(do inglés first in first out), o primeiro item que entra € o primeiro
elemento que sai; para a pilha, o LIFO (do inglés last in, first out), o
ultimo elemento que chega € o primeiro elemento que sai. Quanto
as listas, das quais pilha e fila tambem fazem parte, seus conceitos
também serdo detalhados, bem como uma série de estratégias para
implementa-los — apresentados na Secao 2.

Um algoritmo de pesquisa tem como objetivo encontrar um ou
mais elementos em um determinado conjunto de registros, cujo
resultado, ao executa-lo, pode ser bem-sucedido ou ndo. Em relagao
aos metodos de pesquisa, existem inumeros: pesquisa sequencial,
pesquisa binaria e pesquisa interpolacao; cada um deles sera descrito
na Secao 3.

Por fim, na Secao 4, trataremos o processo de classificacdo ou,
simplesmente, ordenacdo, que tem como objetivo organizar um
conjunto de informacdes semelhantes em uma ordem crescente
ou decrescente. Dentre os mais diversos motivos para realizar uma
ordenagao sequencial, pode-se ressaltar a possibilidade de acesso aos
dados de forma mais eficiente.

74

Secaol

Alocacao dinamica de memoria
Introducgdo a secao

Sobre alocacao dinamica, Laureano (2008) descreve que ela ocorre
em tempo de execugao, na qual uma determinada variavel e sua
estrutura sdo declaradas sem que haja a necessidade de definicao de
tamanho. Ao executar o programa, a memoria sera reservada quando
houver a necessidade de utilizacdo de uma variavel ou parte dela.
Esse tipo de alocacao € bastante usado para resolucdes de problemas
de estrutura de dados, como para filas, arvores dinamicas ou listas
encadeadas.

No entanto, antes de iniciar o estudo sobre as func¢des para
alocacdes dinamicas, € necessario que vocé entenda dois conceitos:
enderecos e ponteiros.

Enderecos

A memoria é composta por uma sequéncia de bytes (um byte
armazena um conjunto de 256 valores); esses bytes possuem
numeracao sequencial e essa numeracao € seu endereco.

Ponteiros

Segundo PUCRS (s.d.), um ponteiro é descrito como uma variavel
capaz de armazenar um endereco de memaoria ou 0 endereco de outra
variavel. As variaveis sdo posicdes ocupadas na memoria e seus valores,
normalmente, sdo do tipo char, int, float, double, dentre outros. Para
IME2 (s.d.), uma varidvel do tipo ponteiro pode conter um determinado
valor, ou seja, 0 endereco para outras posicdes na memaoria.

Para declarar um ponteiro, vocé deve especificar para qual tipo de
variavel ele ird apontar. O operador que indica a variavel € o *. Exemplo:
ponteiro para um inteiro, int *ponteiro.

Existem quatro tipos de funcdes para alocacdes dinamicas, tais
como: malloc(), calloc(), reallocl(), sizeof() e free(); no entanto, as mais
utilizadas sao a malloc() e a free() — que falaremos um pouco mais a
seqguir.

U3 - Estrutura de Dados

Funcdo malloc

Essa funcao tem como objetivo realizar a alocacdo de um bloco de
byte (consecutivos) na memaoria RAM da maquina e fazer a devolucao
do endereco do bloco. Para tanto, devemos informar a quantidade de
bytes para a funcdo, e a sintaxe para a fungao malloc () é:

void *malloc (valor inteiro que representa a quantidade de bytes
a ser alocado).

Na Figura 1.1exemplificamos esse tipo de funcao, cujademonstracao
nos revela que um determinado usuario podera definir o tamanho do
espaco na memoria que devera ser alocado.

Figura 1.1 | Exemplo fun¢do malloc()

#include <stdlib.h>
int heads()

{ return rand() < RAND_MAX/2; }
main(int argc, char *argvl])
{inti,], cnt;
int N = atoi(argv[l]), M = atoi(argv[2]);
int *f malloc«N+1)*sizeof(int»;
for (j = 0; j <= N; j++) f[j] = OJ
for (i=0OJ i< M; i++, flcnt]++)
for(cnt=0,j0;j<=N; j++)
if (heads(» cnt++;
for = 0;j <= N; j++)
printf("%2d n, j);

for (i = 0; i < f[j] j i+=10) printf("*");
printf("\n")j

}

Fonte: Sedgewick (1998, p. 87)

Funcédo Free

Sempre que houver o término de uma alocacdo dinamica durante
a execucao de um programa ou aplicagao, € necessaria a liberacdo da
memoria alocada. A responsabilidade dessa liberacdo € da funcao free.

U3 - Estrutura de Dados

75

76

Figura 1.2 | Exemplo funcéo Free()

#include <stdio.h>
#include <stdlib.h>

int main() {

}

char *c; /* o ponteiro para o espaco alocado */

/* aloco um Unico byte na memoria */
¢ = (char *)malloc(1);

/* vejo se conseguiu alocar */
if (Ic) {
printf("N&o conseguiu alocar a memoria\n");
exit(1);
}
/* carrego um valor na regido de memoria alocada */
c="d}

/* escrevo este valor */
printf("%c\n",*c);

/* libero a memoria alocada */
free(c);

Fonte: UNICAMP (s.d.)

U

@ Para saber mais

Disponibilizamos alguns materiais para complementar seu estudo.
Links

CS. The Stony Brook Algorithm Repository. Disponivel em: <http://
www3.cs.stonybrook.edu/~algorith/>. Acesso em: 13 ago. 2017.

IME. Alocacdo dindamica de memoria. Disponivel em: <https://www.
ime.usp.br/~pf/algoritmos/aulas/aloca.ntml>. Acesso em: 13 ago. 2017.

Livro

HERBERT, S. C Completo e Total. Editora Makron, 3. ed., 1997.

9 Questdo para reflexdao

Analise as caracteristicas relacionadas a alocagdo dinamica: quais foram
as principais diferencas percebidas em relacdo a alocacdo estatica?
Descreva sua percepgao e compartilhe com seu professor na area do
aluno.

3 - Estrutura de Dados

Dica de leitura sobre as diferencas entre as alocacdes: <https://www.
inf.ufes.br/~pdcosta/ensino/2011-2-estruturas-de-dados/slides/
Aula3&47%28vetores&ponteiros’%29.pdf>. Acesso em: 13 ago. 2017.

Atividades de aprendizagem

1. Baseando-se na anélise dos conceitos relacionados & alocacdo dinamica
de memoria, assinale a alternativa que descreve um desses conceitos:

a) As funcdes free() e malloc() sdo muito importantes para alocagao dinamica.
b) A alocacdo dinamica é feita por meio de um vetor definido inicialmente e
que nao tem o valor de tamanho alterado.

c) A funcdo malloc() tem como objetivo realizar o merge de dois registros
de dados.

d) Ndo € necessario trabalhar com ponteiros na alocagado dinamica.

e) A alocacdo dinamica ndo € aplicavel nos projetos que utilizam a
metodologia agil.

2. Analise a afirmativa: Sempre que houver o término de uma alocacdo
dinamica durante a execucao de um programa ou aplicacdo, é necessaria
a liberacdo da memoria alocada. Essa afirmacdo refere-se a qual tipo de
funcao:

a) Funcao malloc ().

b) Funcao free ().

c) Pilha.
d) Fila.
e) Main.

3. Pode-se afirmar que existem varios tipos de funcdes de alocacdo
dindmica. Assinale a alternativa que ndo relacionada um tipo de alocacdo
dinamica:

a) Malloc().

b) Free ().
c)Int ().

d) Sizeof ().
e) Main ().

U3 - Estrutura de Dados

77

78

4. Marque a alternativa que mostra a representacdo grafica de operador
relacionado ao ponteiro:
a) %.

*

O T

o
P HE

)
)
)
e)

5. Analise as afirmativas relacionadas & alocacio dinamica:

| — A alocagdo dinamica permite que seja definido um valor Unico que deve
ser utilizado até o fim das operacdes.

Il = A fungéo malloc () representa um método de pesquisa de algoritmos.
Marqgue a alternativa que relaciona as afirmativas corretas:

a) Somente | esta correta.

b) Somente Il esta correta.

c) | e Il estdo corretas.

d) As duas opgdes estdo incorretas.

e) | é uma opgdo incompleta e ndo foi possivel analisar e Il estd correta.

Fique ligado

Nesta secdo, apresentamos 0s conceitos de alocacdo dinamica:
enderecos, ponteiros e funcdes principais; bem como alguns exemplos
de codigos relacionados aos conceitos apresentados.

Nas secdes que estdo na sequéncia da presente unidade, iremaos
avaliar algumas estruturas de dados utilizando o conceito de alocacao
dindamica.

U3 - Estrutura de Dados

Secao 2

Listas e seus casos especificos (pilha e fila)
Introducdo a secao

Ao estudarmos a disciplina de estrutura de dados, entendemos que
ela é de grande importancia na organizacao, manipulacao e localizacao
de informacdo em uma determinada aplicacao; e trés dos conceitos
mais usados € o de lista, pilha e fila.

Podemos ver a lista como uma sequéncia de itens que estao
organizados em um conjunto, Ndo necessariamente, de maneira logica,
pode ter um endereco. Por sua vez, considerada umas das estruturas
de dados mais simples, a pilha € uma das estruturas de dados mais
usadas pelas equipes de desenvolvimento de software. Seu objetivo
principal € acessar os itens que estao No topo da lista, aplicando o
critério de que o ultimo elemento a entrar € o primeiro a sair. Para que
fique facil o entendimento desse conceito, pense na sua pia de louca,
imagine que para organiza-la vocé devera colocar um prato sobre o
outro, formando uma pilha, cujo ultimo prato sera o primeiro a ser
lavado e a deixara.

Ja no caso das filas, a estrutura e os critérios aplicados sao outros,
uma vez que diferem na ordem de saida dos itens, sendo que o primeiro
elemento que entra € o primeiro item que sai. Fundamentalmente,
apenas um item pode ser inserido no final e retirado do inicio. Pense
que vocé esta no mercado, faz todas as suas compras e vai para a fila
do caixa; ao chegar no caixa, vocé nota que nao tem mais ninguem,
OuU Seja, vocé é o primeiro. Logo depois, chegam outros clientes, que
ocupam posicdes seguintes a sua; voceé, entdo, paga suas compras e
sai da fila - foi o primeiro a chegar e © primeiro a sair. Ficou facil?

Esse foi apenas um resumo da secao, Nos proximaos topicos vamaos
detalhar os conceitos de listas, pilha e fila.

Listas

Ao analisarem o conceito de lista, Tenenbaum, Langsam e
Augenstein (1995) concluem que ela € composta por um endereco
que faz a ligacao para o proximo item, possibilitando seu acesso de
forma randdmica e a realizacdo de operacdes, tais como, inclusdo ou

U3 - Estrutura de Dados

79

80

exclusdo. As listas podem ser lineares ou encadeadas.

a. Listas lineares: os elementos estdo organizados de forma
sequencial, embora isso ndo signifiqgue estarem numa
sequéncia fisica. Exemplo: vocé vai ao dentista, enguanto
aguarda, existem varias pessoas na sala, porem, suas posicdes
de cadeiras ndo estdao na sequéncia. Assim, cada item da lista
€ conhecido como no ou nodo. Dentre os exemplos de listas
lineares, Tenenbaum, Langsam e Augenstein (1995) citam as
pilhas e filas, cujos temas serdo tratados Nos Proximos topicos.

b. Listas encadeadas: os itens nao possuem uma ordem
sequencial na memoria. A fim de manter-se sequencialmente
l6gica, podem ser codificadas de duas maneiras: simplesmente
encadeada e duplamente encadeada (TENENBAUM;
LANGSAM; AUGENSTEIN, 1995).

- Simplesmente encadeada: cada item tem um espaco para
armazenar informacao e a referéncia da localizacao na memoria,
considerando o item sequinte da lista;

- Duplamente encadeada: cada item possui um espaco para
armazenar informac¢do e a referéncia da localizagdo na memoria,
considerando o item anterior da lista.

Pilha

De acordo com Tenenbaum, Langsam e Augenstein (1995), pilha é
um dos conceitos mais uteis, desempenhando um papel proeminente
nas areas de programacao e suas linguagens. Seu conceito € descrito
como um conjunto ordenado de itens, no qual novos itens podem
ser inseridos e, a partir do qual, eles podem ser eliminados em uma
extremidade chamada topo da pilha.

Ao analisar o contexto no qual o conceito de pilha ¢ aplicado,
identificamos: edicao de textos, processo para navegacao entre
browsers, fun¢cdes que requerem recursividade etc. Para implementar
0s conceitos de pilha, podem ser usados vetores ou listas encadeadas.

A principal caracteristica de uma pilha € que a ultima informacgao
a entrar € a primeira informacdo a sair, conhecida pela sigla LIFO
(do inglés, last in first out). Sua estrutura € composta pelos seguintes
métodos: push (empilhar informacdo), pop (desempilhar informacao),
size (retornar o tamanho total da pilha), stackpop (retornar maior
elemento sem que seja removido) e empty (verificacdo se a pilha

U3 - Estrutura de Dados

estad vazia). Observe a Figura 1.3, nela, exemplificamos a entrada de
informag¢do, como sdo posicionadas em um vetor e, depois, quando
uma informacao foi desempilhada, qual foi o posicionamento do topo
e qual informacao saiu do vetor.

Figura 1.3 | Exemplo de pilha

Empilhar (10) Empilhar (6) Empilhar (2) Desempilhar
4 4 4 4
3 3 3 3
2 2 2 X~ | 2
1 1 e {mm 1 6 1 5 <Em
0 10 0 10 0 10 0 10
Topo -0 Topo - 1 Topo - 2 Topo - 1

Fonte: elaborada pelo autor.

A implementacao de uma pilha pode ocorrer de duas formas: por
meio de vetor ou ponteiros.

Implementacao por vetor

De acordo com Tenenbaum, Langsam, Augenstein (1995), a
implementacdo de uma pilha por meio de um vetor envolve a
declaracdo de dois objetos, um vetor para armazenamento dos itens
da pilha e um inteiro, indicando a atual posicdo do topo no vetor. Em
seguida, podem ser aplicados os métodos/as fungdes de pilha e outras
condi¢des que forem necessarias. Observe a sintaxe do algoritmo
abaixo (IME, [s.d.]).

U3 - Estrutura de Dados

81

Figura 1.4 | Algoritmo de pilha

#define N 100
char pilha[N];
int t;

/I Esta fun¢éo devolve 1 se a string s contém uma
/I sequéncia bem-formada de parénteses e colchetes
/I e devolve 0 se a sequéncia € malformada.

int bemFormada (char s[]) {
criapilha ();

for (inti = 0; s[i] I="\0"; ++i) {
char c;
switch (s[i]) {
case ') if (pilhavazia ()) return 0;
¢ = desempilha ();
if (c!="(") return 0;
break;
case ']": if (pilhavazia ()) return 0O;
¢ = desempilha ()
if (¢ !="T) return 0;
break;
default: empilha (s[i]);
}
}
return pilhavazia ();

}

void criapilha (void) {
t=0;

i

}
void empilha (char y) {
pilha[t++] = y;

char desempilha (void) {
return pilha[--];

int pilhavazia (void) {
returnt <= 0;

}

Fonte: IME (s.d.)

Implementagdo por Ponteiros

Para a implementacdo de pilha usando ponteiros, Bertol (s.d.) cita o
seguinte exemplo de algoritmo e detalha seus comentarios no codigo:

Figura 1.5 | Algoritmo de pilha por ponteiro

#include "stdio.h"
#include "conio.h"
#include "string.h"
#include "stdlib.h"

// modelo matemaético (estrutura de dados)

struct Tipoltem { / cada item da pilha corresponde a um
char nome[30]; / registro (Tipoltem) composto apenas
2 // do campo nome

typedef struct Celula *Apontador; // define o tipo "Apontador” como sendo o
// endereco de uma "Celula”

struct Celula {

Tipoltem Item;

Apontador prox;

h

struct TipoPilha {
Apontador Topo;
b

// conjunto de operagbes que podem ser aplicadas sobre o modelo 'TipoPilha’
void FazPilhaVazia(TipoPilha *Pilha);

int PilhaVazia(TipoPilha *Pilha);

void Empilha(Tipoltem x, TipoPilha *Pilha);

int Desempilha(TipoPilha *Pilha, Tipoltem *x);

void ImprimePilha(TipoPilha *Pilha);

void main() {
Tipoltem X;
TipoPilha Pilha;
FazPilhaVazia(&Pilha); / faz a Pilha ficar vazia
while (1) {
ImprimePilha(&Pilha);
printf("\nInforme um nome do item a ser empilhado, (FIM) para encerrar:\n");
gets(x.nome);
if (strcmp(x.nome, "FIM") == 0)
break;
Empilha(x, &Pilha);

J3 - Estrutura de Dados

83

84

}
// Faz a 'Pilha’ ficar vazia criando a célula cabeca
void FazPilhaVazia(TipoPilha *Pilha) {
Pilha->Topo = (Apontador) malloc(sizeof(Celula));
Pilha->Topo->prox = NULL;
}

// Esta fungédo retorna 1 (true) se a ‘Pilha’ esta vazia; senéo retorna 0 (false)
int PilhaVazia(TipoPilha *Pilha) {

return(Pilha->Topo->prox == NULL);
}

// Insere o item 'x' no 'Topo' da 'Pilha".
void Empilha(Tipoltem x, TipoPilha *Pilha) {
Apontador p;
p = (Apontador) malloc(sizeof(Celula)); // cria uma nova célula cabega
Pilha->Topo->ltem = x; // coloca o item "x" na antiga célula cabeca
// atualiza o topo da pilha
p->prox = Pilha->Topo;
Pilha->Topo = p;
}

// Retira o item X’ que est& no topo da ‘Pilha’
int Desempilha(TipoPilha *Pilha, Tipoltem *x) {
if (PilhaVazia(Pilha))
return(0); / Erro: Pilha vazia.
else {
Apontador p;
p = Pilha->Topo;
Pilha->Topo = Pilha->Topo->prox;
*x = Pilha->Topo->Item; // item retornado
free(p);
return(1); // Item retirado com sucesso
}
}

void ImprimePilha(TipoPilha *Pilha) {
Tipoltem x;
TipoPilha PilhaAux;
FazPilhaVazia(&PilhaAux);
clrscr();
while (IPilhaVazia(Pilha)) {
Desempilha(Pilha, &x);
printf("%s\n", x.nome);
Empilha(x, &PilhaAux); // salva os itens desempilhados da 'Pilha’
// na 'PilhaAux’

// retorna o itens para a pilha original (Pilha)
while (IPilhaVazia(&PilhaAux)) {
Desempilha(&PilhaAux, &x);
Empilha(x, Pilha);
}
}

Fonte: Bertol (s.d.).

Fila
A fila representa um conjunto com itens ordenados; a partir desse
conjunto ¢ possivel executar a eliminagdo dos itens que estdo em

U3 - Estrutura de Dados

uma das extremidades (inicio da fila), e sdo adicionados ou deletados
sequindo o conceito de que o primeiro que entra € o primeiro que sai
(doinglés, FIFO — first in, first out, traduzido para o portugués como o
primeiro que entra é o primeiro que sai). Esse conceito nao é apenas
aplicavel a area de desenvolvimento de sistemas, preste atencdo no
seu dia a dia, as filas estao presentes no supermercado, nas instituicdes
bancarias ou na hora de pagar a pipoca no cinema. Em um sistema,
podemos ter esse conceito aplicado para mensagens trocadas em
uma rede, controlar fila de impressao de documentos etc.

Os métodos basicos usados para a fila sdo: insert (inserir novos itens
em uma fila - no final), remove (excluir o item da fila — no inicio), empty
(verificacdo se a fila estd vazia), size (retornar o tamanho da fila) e front
(retornar o item na sequéncia, sem que seja retirado).

A implementacdo de uma fila pode ocorrer de duas formas: por
meio de vetor ou ponteiros.

Implementacgao por vetor

Para implementar uma fila por vetor, estruture a fila com o numero
de itens (n), um vetor para armazenamento dos itens e um inteiro para
determinar a posi¢cao atual do vetor que armazena o primeiro item da
fila. No exemplo citado a seguir, podemaos ver o algoritmo de calculo de
distancia entre cidades, identificando a fila ordenada de interliga¢des:

U3 - Estrutura de Dados

85

Figura 1.6 | Algoritmo de fila por vetor

#define N 100
int fila[N], int p, u;
int dist[N];

void criafila (void) {
p=0;u=0;
}

int filavazia (void) {
return p >= u;

}

int tiradafila (void) {
return fila[p++];

void colocanafila (int y) {
fila[u++] = y;

}

void distancias (int A[J[N], int c) {
for (intj = 0; j < N; ++j) dist[j] = N;
dist[c] = 0;
criafila ();
colocanafila (c);

while (!filavazia ()) {
int i = tiradafila ();
for (intj = 0;j < N; ++j)
if (Ali][] == 1 && dist[j] >= N) {
dist[j] = dist[i] + 1;
colocanafila (j);
}
}
}

Fonte: IME (s.d.)

Implementacgdo por Ponteiro

Mesmo com a possibilidade de implementacdo da fila por meio de
vetores, a utilizacdo de ponteiros, para torna-la dinamica, torna-se uma
boa pratica, visto que ela pode se expandir. Esse exemplo mostra uma
fila que retorna os numeros reais:

Figura 1.7 | Algoritmo de fila por ponteiro

#include
struct Fila {

int capacidade;
float *dados;
int primeiro;

int ultimo;

int nltens;

}

void criarFila(struct Fila *f, int ¢) {
f->capacidade = c;
f->dados = (float*) malloc (f->capacidade * sizeof(float));
f->primeiro = 0;
f->ultimo = -1;
f->nltens = 0;

void inserir(struct Fila *f, int v) {

if(f->ultimo == f->capacidade-1)
f->ultimo = -1;

f->ultimo++;

f->dados|[f->ultimo] = v; // incrementa ultimo e insere
f->nltens++; // mais um item inserido

}
int remover(struct Fila *f) { // pega o item do comeco da fila
int temp = f->dados[f->primeiro++]; // pega o valor e incrementa o primeiro

if(f->primeiro == f->capacidade)
f->primeiro = 0;

f->nltens--; // um item retirado
return temp;

U3 - Estrutura de Dados 87

88

int estaVazia(struct Fila *f) { // retorna verdadeiro se a fila esta vazia
return (f->nltens==0);

}

int estaCheia(struct Fila *f) { / retorna verdadeiro se a fila esta cheia

return (f->nltens == f->capacidade);

}
void mostrarFila(struct Fila *f){
int cont, i;
for (cont=0, i= f->primeiro; cont < f->nltens; cont++){
printf("%.2f\t",f->dados][i++]);
if (i == f->capacidade)
i=0;
}
printf("\n\n");
void main () {
int opcao, capa;
float valor;
struct Fila umaFila;
/I cria a fila
printf("\nCapacidade da fila? ");
scanf("%d",&capa);

criarFila(&umaFila, capa);

/I apresenta menu
while(1 1

printf("\n1 - Inserir elemento\n2 - Remover elemento\n3 - Mostrar Fila\n0 -
Sair\n\nOpcao? ");

scanf("%d", &opcao);

switch(opcao){

case 0: exit(0);

case 1: // insere elemento
if (estaCheia(&umaFila)){

printf("\nFila Cheia!!'\n\n");

else {
printf("\nValor do elemento a ser inserido? ");
scanf("%f", &valor);
inserir(&umaFila,valor);

}

break;

U3 - Estrutura de Dados

case 2: // remove elemento
if (estaVazia(&umaFila)){

printf("\nFila vazia!!\n\n");

else {
valor = remover(&umaFila);
printf("\n% 1f removido com sucesso\n\n",
valor) ;

}

break;

case 3: // mostrar fila
if (estaVazia(&umaFila)){

printf("\nFila vaziallhmn");

else {

printf("\nConteudo da fila =>");
mostrarFila(&umaFila);

}

break;

default:
printf("\nOpcao Invalida\n\n");

}

}

Fonte: UFRJ (s.d.)

e Questao para reflexao

Pesquise sobre o desempenho de filas, pilhas e listas; identifique qual
delas tem melhor desempenho em uma aplicagcdo e compartilhe com
seu professor.

(%) Para saber mais

Disponibilizaremos alguns materiais que complementardo o estudo dos
temas desta unidade.

Links

UNICAMP. Apostilas. Disponivel em: <http://www.ic.unicamp.
br/~ra069320/PED/MC102/1s2008/Apostilas/>. Acesso em: 13 ago.
2017.

UFMG. Estrutura de dados basica. Disponivel em: < http://homepages.
dcc.ufmg.br/~cunha/teaching/20121/aeds2/lists.pdf>. Acesso em: 14
ago. 2017.

U3 - Estrutura de Dados 89

920

Livros
ZIVIANI, N. Projeto de Algoritmos. 2. ed., Editora Thomson.
SEDGEWICK, R. Algorithms in C. 3. ed., Editora Addison-Wesley, 2008.

Atividades de aprendizagem

1. Em relacdo aos conceitos relacionados as listas, analise as opcdes abaixo:
| - ____ pode-se concluir que ela € composta por um endereco que faz a
ligagdo para o proximo item, possibilitando seu acesso de forma randdmica
e a realizacdo de operacdes, tais como inclusdo ou exclusao.

Il -____. Seu conceito é descrito como um conjunto ordenado de itens no
qual novos itens podem ser inseridos.

Marqgue a alternativa que preenche, respectivamente, as lacunas:

a) Lista e Pilha.

b) Lista e Fila.

c) Fila e Pilha.

d) Fila e Lista.

e) Malloc e Free.

2. Em relacdo aos conceitos relacionados as listas, analise as opcdes abaixo:
| - ____ pode-se concluir que ela € composta por um endereco que faz a
ligagdo para o proximo item, possibilitando seu acesso de forma randdmica
e a realizagcao de operacdes, tais como, inclusao ou exclusdo.

Il -____. Seu conceito é descrito como um conjunto ordenado de itens no
qual novos itens podem ser inseridos.

Marqgue a alternativa que preenche, respectivamente, as lacunas:

a) Lista e Pilha.

b) Lista e Fila.

c) Fila e Pilha.

d) Fila e Lista.

e) Malloc e Free.

3. Analise as afirmativas:

| — Na Pilha é possivel retirar o item que esta na ultima posicdo.

Il — Na Fila é possivel ter um item que esta na Ultima posicao e serad o primeiro
a sair.

U3 - Estrutura de Dados

Assinale a alternativa que apresenta a resposta correta:
a) | esta correta.

b) Il esta correta.

c) l e Il estdo corretas.

d) I e Il estdo incorretas.

e) | estd correta e |l estd incorreta.

4. Analisando as caracteristicas relacionadas a fila, assinale a opcéo que ndo
representa um dos métodos basicos usados por ela:

a) insert.

b) remove.

c) size.

d) time.

e) while.

5. Analise a descricdo: sua estrutura é composta pelos seguintes métodos:
push, pop, size, stackpop e empty. Essa descricdo esta relacionada a:

a) Implementacao por vetor de uma lista.

b) Fila.
c) Pilha.
d) Lista.
e) Classes.

Fique ligado

Nesta secdo, compartilhamos os conceitos sobre fila, pilha e lista,
mostrando a importancia da organizacao, manipulacdo e localizacao
de uma informacdo em especifico e percebendo que esses conceitos
sao amplamente difundidos na area de desenvolvimento de aplicacdes.

U3 - Estrutura de Dados

91

92

Secao 3

Algoritmos de pesquisa
Introducgdo a secao

A presente se¢do tem como objetivo apresentar os algoritmos de
pesquisa para busca de uma determinada informacao, seja em um
vetor ou uma matriz. O raciocinio para elaboracdo de um algoritmo
de busca é baseado na comparacao entre o elemento a ser procurado
e cada um dos elementos que pertencem ao vetor ou matriz. Essa
comparacao € executada até que o elemento em questdo seja
encontrado ou que, apos uma varredura completa, seja identificado
qgue ele ndo pertence ac conjunto pesquisado.

Para Tenenbaum, Langsam, Augenstein (1995), o algoritmo de
busca deve aceitar um argumento e busca-lo em um conjunto de
elementos. O retorno do elemento pode ser inteiro ou ponteiro, uma
vez que tenha sido encontrado ou nao.

Dentre os fatores que influenciam o desempenho de uma pesquisa,
podemos citar a forma com que os elementos estdo organizados:
ordenados ou desordenados. No primeiro caso, existe a necessidade
de verificagdo do primeiro ao ultimo elemento do vetor ou matriz.
No segundo caso, ao compararmos o elemento buscado com um
elemento do vetor ou matriz e o identificarmos como maior ou menor,
pode-se chegar a uma conclusao sobre sua inexisténcia.

Assim, considerando que a atividade de pesquisa de dados € uma
atividade habituale que exige algoritmos eficientesem desempenho, Nos
topicos a seguir, apresentaremos 0s sequintes metodos de pesquisas:
pesquisa sequencial, pesquisa binaria e pesquisa interpolagao.

a. Pesquisa sequencial

Para Tenenbaum, Langsam, Augenstein (1995), a pesquisa sequencial
OU pesquisa linear € considerada o meétodo mais simples de pesquisa, a qual
pode ser descrita como andlise de todos os elementos do vetor de forma
sistematica. Essa analise inicia no primeiro elemento do vetor e prossegue para
0S seguintes ateé que encontre o elemento procurado ou até finalizar o conjunto
de elementos. Considerando essa caracteristica, a pesquisa sequencial € um
metodo demorado e dependente do tamanho total do vetor.

U3 - Estrutura de Dados

Para entender qual € o comportamento de uma pesquisa sequencial,
analise o algoritmo demonstrado na Figura 1.8:

Figura 1.8 | Exemplo algoritmo pesquisa sequencial

/I Retornar um valor inteiro x em um vetor
/I crescente v[0..n-1] e retorna um indice j
/I em 0..n tal que V[j-1] < x <= V[j].

int pesquisaSequencial (int x, int n, int v[]) {
intj=0;
while (j < n && V[j] < x)
it
return j;

}

Fonte: elaborada pelo autor.

Apds uma analise, existerm quantos loops comparativos, entre
X e os elementos pertencentes ao vetor? Podemos concluir que
existirao n comparacdes. Se o tamanho do vetor for 10, por exemplo,
a quantidade de loops de comparacao Serdao multiplicada por 10 e o
tempo despendido para a pesquisa levara em consideracao o numero
de comparagdes realizadas.

Dentre suas vantagens, podemos citar: forma mais simples de busca,
melhor eficiéncia para quantidade pequena e média de informacdes e
todos os elementos do conjunto podem ser pesquisados. Em relacao
as desvantagens, estdo: a tabela precisa estar ordenada, existe espaco
adicional para armazenamento de indices de pesquisa e baixa eficiéncia
para grande volume de dados.

b. Pesquisa binaria

Considerando a necessidade de aceleracao dos meétodos de
pesquisa, Uma estratégia a ser utilizada € o particionamento de forma
sucessiva do conjunto de valores do vetor, a fim de reduzir a quantidade
de elementos a serem analisados. No entanto, esse € um método de
pesquisa que apenas funcionara se o conjunto de elementos estiver
ordenado.

Vamos ao seguinte exemplo: vocé esta pesquisando o elemento
5 em um dado conjunto de valores; esse conjunto de valores € igual
a 1,2,34,56,7. A pesquisa bindria ira analisar o elemento que esta
no meio do conjunto, no vetor citado, o valor 4. Ao comparar O
elemento pesquisado com o elemento de valor medio, € verificado

U3 - Estrutura de Dados

93

94

gue o elemento pesquisado 5 ¢ maior do que o elemento médio, a
pesquisa continuara na segunda metade do vetor e a primeira metade
é descartada. Agora, na sequnda metade do vetor (5,6 e 7), o elemento
méedio € 0 6, que € maior que 5, entdo 6 e 7 sdo descartados. Assim, o
elemento € encontrado.

Observe o algoritmo da Figura 1.9. Neste algoritmo, a proposta foi a
busca por um determinado elemento X que percorre o vetor e retorna
-1, pelo fato do elemento ndo ser encontrado.

Figura 1.9 | Exemplo de algoritmo pesquisa binaria

int
buscaBinaria (int x, int n, int v[]) {

inte, m, d; /N
e=0;d=n-1; 12
while (e <=d) { /'3
m = (e + d)/2; 14
if (v[m] == x) return m; 11'5
if (V[m]<x)e=m+ 1; 16
elsed=m-1; 17
} /I8
return -1; 119
}
Fonte: IME (s.d.)

c. Pesquisa interpolagcao

De acordo com Tenenbaum, Langsam, Augenstein (1995), a pesquisa
por interpolacao € outro método a ser aplicado em um vetor ordenado,
tornando-se uma variante melhorada da pesquisa binaria. Inicialmente,
low é definido com O e high torna-se n-1, e, no algoritmo, a chave de
argumento key sera reconhecida por estar entre low e high. Considerando
que as chaves estao uniformemente distribuidas entre esse intervalo de
valores, esperamos que a key esteja em posicao aproximada: mid = low
+(high - low) * (tkey - kllow))/k(high) - k(low))) (TENENBAUM, 1995).

Ao aplicar a formula de aproximacao, se a key< mid, € necessario
redefinir high como mid-1, caso contrario, faca a redefinicdo de
low como mid+1. Esse processo € necessario até que a chave seja
encontrada ou que low> high (TENENBAUM, 1995).

E importante ressaltar que a busca por interpolacdo ¢ lenta, pois
envolve calculos aritméticos sobre as chaves, alem de complexas
multiplicacdes e divisdes, tornando-a mais vagarosa gue a busca binaria,
mesmao que O processo de comparacdes seja com menos iteracdes

U3 - Estrutura de Dados

(TENENBAUM, LANGSAM, AUGENSTEIN, 1995). A representacao dessa
busca em forma de algoritmo segue na Figura 1.10, logo abaixo:

Figura 1.10 | Exemplo algoritmo pesquisa por interpolacdo

int pesqlnter(int chave, int v[], int n) {
intini=0;
int meio;
intfim=n-1;
while (ini <= fim) {
meio = ini + ((fim-ini)*(chave-v[ini])) / (v[fim]-v[ini]);
printf("\n O indice do meio foi: %i", meio);
if (chave < v[meio]) {
fim = meio - 1;
} else if (chave > v[meio]) {
ini = meio + 1;
}else {
return meio;
}

return -1; // indice Impossivel
}

Fonte: UNICAMP (s.d.)

e Questado para reflexao

Analise o seguinte cenario: Carlos € gerente de projeto em uma grande
empresa de construcdo civil e esta responsavel por gerenciar a execugao
do mais novo projeto de casas de condominios fechados na sua cidade.
A empresa possui um sistema que gerencia todo o ciclo de vida dos
projetos e todas as informagdes pertinentes. Analise op¢des de como
os algoritmos de pesquisa podem ser utilizados no sistema de gestao de
projetos usado pelo Carlos. Compartilhe sua opinido com o professor.

Dica: <http://pmbook.ce.cmu.edu/10_Fundamental_Scheduling_Procedures.
html> (Acesso em: 28 de jul. 2017).

(%) Para saber mais

Complementaremos seu material de estudo com alguns links sobre
algoritmos.

Links

ALGOSORT. Computer Programming Algorithms Directory.
Disponivel em: <http://www.algosort.com/>. Acesso em: 28 jul. 2017.

U3 - Estrutura de Dados

95

96

PRINCETON. Algorithms. Disponivel em: <http://algs4.cs.princeton.
edu/lectures/13StacksAndQueues.pdf>. Acesso em: 28 jul. 2017.

MIT. Introduction to Algorithms (SMA 5503). Disponivel em:
<https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/>.
Acesso em: 28 jul. 2017.

ZUNNY. Using the "bestfast” search algorithm and "profile” tables.
Disponivel em: <http://zunny.com/RUBIK.HTM>. Acesso em: 28 jul.
2017.

Atividades de aprendizagem

1. Analise a sequéncia de numeros apresentados no vetor representado
abaixo:

1o/ 1;n
e
"
i
.
i
u
i

Utilizando um algoritmo de pesquisa binaria, quantos loops serao necessarios
até que o elemento 45 seja encontrado?

a) 8.

b) 5.

)

) 3.
d 2.
)1

2. Esse método utiliza um vetor ordenado e realiza particionamento do
espaco de busca, realizando a comparacao do elemento a ser localizado
com o elemento no meio do vetor. Caso o elemento a ser localizado seja
igual ao elemento do meio, a pesquisa € encerrada. Sendo, a pesquisa
continua o particionamento, até o que o elemento seja localizado ou todos
os elementos sejam pesquisados e a busca encerrada. Baseando-se nessa
descricao, de qual método estamos falando?

a) Pesquisa sequencial.

b) Pesquisa binaria.

U3 - Estrutura de Dados

c) Pesquisa sequencial recursiva.
d) A descricdo ndo esta relacionada a nenhum tipo de pesquisa.
e) A descricdo pode ser usada para todos os tipos de pesquisa.

3. Jodo é um professor de Logica e citou a seguinte frase: Para resolver um
problema, precisamos dividi-lo em pequenas partes menores; a partir dessa
divisdo, podemos ver que ele ficara mais simples.

Ao fazer uma analogia com os métodos de pesquisa, estamos nos referindo
a:

a
b
c
d

Pesquisa sequencial.

Pesquisa binaria.

Pesquisa por interpolacdo.

Nenhuma das alternativas anteriores.

= = =

4. Analise a seguinte imagem:

vetor [i] ==

x?

Retornei
Fimda Busca Fimda busca

Utilizando a representacdo grafica da figura, verifique quantas iteracdes
serdo necessarias até encontrar o valor 8 no vetor:

U3 - Estrutura de Dados

97

5. Analise as opcées a seguir:

| — Pesquisa sequencial: existem calculos aritméticos para localizar o valor
buscado.

Il — Pesquisa binaria: se o vetor contém 8 posicdes e o valor buscado esta
na 82 posicao, consequentemente, o total de verificagcdes sequenciais sera
igual a 8.

E correto afirmar que:

a) | estd correta e |l estd incorreta.

b) | e Il estdo corretas.

c) | estd incorreta e Il esta correta.

d) | e Il estdo incorretas.

Fique ligado

A pesquisa de dados € a base fundamental na area de
desenvolvimento de software, garantindo que dados importantes
sejam recuperados para utilizacdo no cotidiano das mais variadas
instituicbes publicas ou privadas. Dada essa importancia, faz-se
necessaria a projecao de algoritmos que sejam confiaveis e eficientes
Nno retorno de dados. Para tal, existern métodos de pesquisa; abaixo
verifiqgue as figuras que representam graficamente esses metodos.

e. Pesquisa sequencial:

98 U3 - Estrutura de Dados

Figura 1.11 | Representacéo grafica - pesquisa sequencial

vetor [i] ==
x?

BuscaFalhou Retornei
Fimda Busca Fimda busca

Fonte: elaborada pelo autor.
Legenda:
i = posicao do vetor
n = tamanho do vetor

x= elemento a ser localizado no vetor

f. Pesquisa binaria:

U3 - Estrutura de Dados

99

Figura 1.12 | Representacdo grafica - pesquisa binaria

BuscarX=3
Esquerda Meio Direita

12. pesquisa v: [S S I I BN TR A

(>=X)

Esquerda Mejo Direita

22, pesquisa \: nn

(>=X)

Esquerda Meio Direita

32, pesquisa \: n

(>=X)

Resposta: X encontrado!

Fonte: elaborada pelo autor.
g. Pesquisa por interpolagao:
Figura 1.13 | Representacdo grafica - pesquisa por interpolagcdo
: IEE
Y T

1-34567

Fonte: elaborada pelo autor.

100 U3 - Estrutura de Dados

Secao 4

Classificacao
Introducdo a secao

Ao citar o conceito de um determinado conjunto ordenado é
perceptivel que ele tem um impacto na nossa rotina. Pense na sequinte
cena: vocé vai até a biblioteca da nossa instituicao para realizar um
empreéstimo de um livro de estrutura de dados. Ao chegar 1, verifica
que existem muitas prateleiras, mas, como todos os livros fazem parte
de um catalogo, todos estdo em suas posicdes especificas, logo, vocé
realizard a consulta da posicao do livro buscado e sera direcionado
a prateleira correta. Assim, como no nosso exemplo, de forma geral,
um determinado conjunto de itens recebe uma classificacdo para
producao de relatorios ou para que o procedimento de acesso aos
dados seja mais eficiente.

Podemos dividir a classificacao em dois grupos: interna, quando
O conjunto de dados esta contido na memoria principal, e externa,
guando seu armazenamento nao estd na memoria. Em relacdo aos
metodos de classificacdo interna, estdo: insergcao, troca, selecao,
intercalacdo e distribuicao.

Classificagdo interna por bolha (bubble sort)

Provavelmente, ¢ o tipo de classificacdao mais conhecido; uma
das suas principais caracteristicas € a facilidade de entendimento e
programacao; no entanto, € a menos eficiente, pois a ideia central
€ percorrer o arquivo de forma sequencial diversas vezes; a cada
iteracdo, um item € comparado com O Seu sucessor e trocados de
ordem, caso necessario. O algoritmo que representa esse metodo esta
demonstrado na Figura 1.14:

U3 - Estrutura de Dados

101

102

Figura 1.14 | Exemplo de método bolha

bubble (x, n)
int x[], n;

{
int hold, j, pass;
int switched = TRUE;
for (pass = 0; pass < n-1 && switched == TRUE; pass++) {
/* repeticao mais externa controla n°® de passagens */
switched = FALSE; /* inicialmente nenhuma troca */ /* foi feita nesta passagem */
for (j = 0; j < n-pass-1; j++)
/* repeticao mais interna controla cada pass indiv */
if (X[] > x[j+) {
/* elementos fora de ordem */ I* eh necessaria uma troca */
switched = TRUE;
hold = x[j] ;
X[= x[j+];
x[j+] = hold;
Y/ *fimif */
}/ fim for * /
} /* fim bubble */

Fonte: Tenenbaum (1995)

Classificagao interna por troca de particao (quicksort)

Este meétodo consiste em um algoritmo que particiona o vetor e

permite que um valor especifico seja alocado na posicao correta. O
algoritmo que representa esse metodo é:

Figura 1.15 - Exemplo de método quicksort

partition (x, Ib, ub, pj)
intx[], b, ub, *pj;

int a, down, temp, up;

a = x[Ib]; /* a eh o elemento cuja posicao */ /* final eh procurada */
up = ub;

down = Ib;

while (down < up) {

while (x[down] <= a && down < ub)
down++; /* sobe no vetor */
while (x[up] > a)
up--; /* desce no vetor */
if (down < up) {
/* troca x[down] e x[up] */
temp = x[down];
x[down] = x[up];
x[up] = temp;
Y/ fimiif ¥/
} /* fim while */
X[Ib] = x[up];
xX[up] = a;
pj = up;
} /* fim partition */
Fonte: TENENBAUM (1995).

Classificacdo interna por selecao

Este méetodo é aquele no qual sucessivos itens sao selecionados
sequencialmente e organizados em suas posi¢oes de forma ordenada.
Consiste em trocar o menor item de uma determinada lista com o
elemento posicionado no inicio da lista, em seguida, © segundo menor
item com a segunda posicdo e assim sucessivamente com os (n - 1)
itens restantes. Observe nosso exemplo de método de selecdo:

Figura 1.16 | Exemplo de método selecdo

define dpq com a fila de prioridade descendente vazia;
/* pre-processa os elementos do vetor de entrada */
/* inserindo-os na fila de prioridade */
for (i=0; i<n; i++)
painsert(dpg, x[il);
/* seleciona cada elemento sucessivo em sequéncia */
for(i-n-1;i>=0; 1--)
x[i] = pgmaxdelete(dpq);

Fonte: Tenenbaum (1995)

Classificagcdo interna por inser¢do

Uma ordenacao por insercao refere-se a ordenacao de um conjunto
de registros inserindo itens num arquivo ordenado ja existente. Observe
o algoritmo a seguir.

Figura 1.17 | Exemplo de método insercdo

insertsort(x, n)
int x[], n;
{inti, k, y;
/* Inicialmente x[0] é considerado um arq classif de */
/1 um elemento. Apos cada interagdo,*/
/* os elementos x[0] a x[k] estardo em sequencia. */

for (k =1; k<n; k++) {

/*Move 1 posicéo p/ baixo todos elems maiores que y*/

for (k =1; k= 0 && y < x[i] ; i—)
x[i+I] = x[i] ; /* Insere y na posig¢ao correta */
X[i+l] =y;
} /* fim for */
} I* fim insertsort */
Fonte: Tenenbaum (1995)

Classificagdes por intercalagdo

Este processo combina dois ou mais arquivos classificados num
terceiro arquivo classificado. Confira o exemplo na Figura 1.18:

U3 - Estrutura de Dados 103

104

Figura 1.18 | Exemplo de método intercalagdo

mergearr(a , b, ¢, nl, n2, n3)
intall,b[l,c[],nl,n2,n3;
{
int apoint, bpoint, cpoint;
int alimit; blimit, climit;

alimit = nl-1;
blimit = n2-I;
climit = n3-1;
if (n1+n2 1= n3) {
printf("os tamanhos dos vetores sao incompativeis/n");
exit(l);
Y fimif* 1/
/* apoint e bpoint indicam a posicao em que nos */
/* I* encontramos dentro dos vetores a e b respectivamente*/
apoint = 0;
bpoint = 0;
for (cpoint =0 ; apoint <= alimit && bpoint <= blimit; cpoint++)
if(a[apoint]< b[bpoint])
c[cpoint] = a[apoint++];
else c[cpoint] = b[bpoint++];
while (apoint <= alimit)
c[cpoint++] = a[apoint++];
while (bpoint<= blimit)
c[cpoint++] = b[bpoint++];
} /* fim mergearr */

Fonte: Tenenbaum (1995)

U

9 Questao para reflexao

Analise os métodos de classificagao e descreva, na sua opinido, qual
dos métodos apresenta um melhor desempenho? Desenvolva sua
percepcao e compartilhe no portal do aluno.

@ Para saber mais

Nesta secao apresentaremos alguns material complementar de apoio
aos seus estudos de Ordenacgao.

Links

<http://www.ufpa.br/sampaio/curso_de_estdados_2/jota_jota_
ordenacao/Intercalacao_de_arquivos.htm>

<https://www.researchgate.net/profile/Gf_Cintra/
publication/279708678_Pesquisa_e_Ordenacao_de_Dados/
links/5597f0e908ae793d137dfal6.pdf>.

3 - Estrutura

<http://www.lbd.dcc.ufmg.br/colecoes/sbac-pad/1987/0039.pdf>.

<https://books.google.com.br/books?hl=pt-BR&lr=&id=DjyTjonm01
sC&oi=fnd&pg=PA1&dqg=Classifica’% C3%A7%C3%B5es+por+intercal
a%C3%A7%C3%A30+e+de+raiz&ots=uC8mIZNO86&sig=64YrwiXtSc
LMWgBeNUrSJz9ZEN4#v=0onepage&q&f=false>.

Atividades de aprendizagem

1. Tipo de classificacdo mais conhecido, uma das suas principais
caracteristicas ¢ a facilidade de entendimento e programacado; no entanto,
€ a menos eficiente, pois a ideia centrar é percorrer o arquivo de forma
sequencial diversas vezes. Essa descricdo esta relacionada a qual método
de classificagdo:

a) Bolha.

b) Insercao.

c) Selecéo.

d) Quicksort.

e) Fila.

2.0 __ € um meétodo que consiste em um algoritmo que
particiona o vetor e permite que um valor especifico seja alocado na posi¢cdo
correta. Marque a alternativa que preenche a lacuna:
a) Bolha.
b) Insercao.
c) Selecao.
d) Quicksort.
)

e) Lista.

3. O trecho do algoritmo abaixo refere-se a qual método de classificacdo?

for (i=0; i<n; i++)
pqinsert(dpq, X[i]);
/* seleciona cada elemento sucessivo em sequéncia */
for(i-n-1;i>=0; 1--)

x[i] = pgmaxdelete(dpq);

U3 - Estrutura de Dados

105

106

a) Insergéo.
b) Bolha.
c) Selegéo.
d) Quicksort.
e) Lista.

Fique ligado

Chegamos ao final da unidade, vocé percebeu que a estrutura
de dados apresenta inumeros beneficios, tais como, organiza¢do da
informacao, melhoria de desempenho, reutilizacdo de codigos, dentre
outros. Pesquise e analise uma aplicabilidade da estrutura de dados na
area de Gestao de Projetos, identificando as principais caracteristicas
dos meétodos usados e de que forma apoia © planejamento e a
identificacao de possiveis desvios na sua execucao. Compartilhe o
resultado de sua analise com o professor!

Para concluir o estudo da unidade

Quando falamos em desenvolvimento de software, devemos
pensar nos metodos que serao utilizados para implementa-lo; assim, o
produto final devera ter sua estrutura de dados arquitetada e, portanto,
seus dados organizados; custo reduzido, tanto para criacdo guanto
para manutencao; reutilizacao de codigos, aléem de proporcionar a
interoperabilidade e bom desempenho.

Atividades de aprendizagem da unidade

1. Abaixo, temos uma pilha, observe:

0 [1]2 3 |4/5]|]6]7]8]9
333100 | 22
TOP

Fonte: elaborada pelo autor.

Sabemos que é uma pilha, pois a estrutura acima possui um unico apontador
denominado TOPO.

U3 - Estrutura de Dados

Assim, na operacao de insercao de pilha, analise a sequéncia de inser¢cdes
a seqguir:

I. Inserir o elemento 33, topo ocupa posicao zero.

II. Inserir o elemento 3, topo ocupa posi¢do 1.

[Il. Inserir o elemento 100, topo ocupa posicdo 2.

IV. Inserir o elemento 22, topo ocupa posicdo 3.

Assinale a alternativa correta:

a) As alternativas |, II, Il e IV estdo corretas.

b) As alternativas |, lll e IV estdo corretas.

c) A alternativa | esta correta e a alternativa Il esta errada.

d) A alternativa | esta correta e a alternativa lll esta errada.

e) As alternativas | e Il estdo corretas e as alternativas Ill e IV estdo erradas.

2. Um navegador, conhecido na informatica por browser, € um programa
que nos permite acessar a internet; ou seja, permite que o usuario “navegue”
na rede mundial de computadores. Muitos desses sites possuem links para
outros sites, e é neste momento de navegacao que, através do link, pode-se
abrir uma outra pagina, e a partir dessa pagina acessar outra.

Diante do exposto acima o Navegador trabalha com:

a) Uma estrutura de Lista Estatica Linear com disciplina de FILA.

b) Uma estrutura de Lista Estatica Linear com disciplina de PILHA.

c) Uma estrutura de Lista Encadeada com disciplina de FILA.

d) Uma estrutura de Lista Encadeada com disciplina de PILHA.

e) Uma estrutura de Lista Duplamente Encadeada com disciplina de PILHA.

3. Uma estrutura de Lista Estatica Linear (PILHA) é semelhante a uma pilha de
pratos, pois cada prato a ser inserido na pilha sera sobre o ultimo elemento,
ou seja, no topo; e toda exclusao é executada a partir do topo também.
Entdo, suponha uma estrutura de Lista Estatica Linear (FILA) que possua
cinco posicdes para elementos inteiros.

Execute a sequéncia de comandos do algoritmo e responda:

19) InicializaPilha().

29) VerificaPilhaVazia().
39) VerificaPilhaCheial).
49) Insere(21).

59) Insere(41).

62) Insere(101).

79) Insere(90).

89) VerificaPilhaCheial).

U3 - Estrutura de Dados

107

Quiais sdo os valores de cada posicao, iniciando pelo indice 0, respeitando a
sequéncia do codigo acima?

a) 21-41-101-90.

b) 90-101-41-21.

c) 21-101-41-90.

d) 101-90-41-21.

e) 21-90-101-41.

4.

Ref [}—

o[e |

v
a|Amanda l | | H Paui‘a [l HFemando| | [}J

Ref[

e
ﬂAmanda | | | H Felipe | | }—»|PauITa l l | HFernand0| | |
]

A imagem refere-se a operagdo de:
a) Incluséo de fila a esquerda.

b) Incluséo de fila a direita.

c) Inclusdo de fila acima.

d) Inclusdo de fila abaixo.

e) Exclusdo de fila acima.

5. P1 ¢ uma pilha com cinco posices, v(1) a v(5), na qual v(5) é o topo. De
v(1) até v(5), a pilha P1 estad preenchida, respectivamente, com os simbolos
Q5, Q3, Q1, Q4, Q2. Ha ainda mais duas pilhas, inicialmente vazias, P2 e P3,
com o mesmo tamanho.

Fonte: Tecnologia da Informagdo Algoritmos e Estrutura de Dados Estruturas
de dados Pilhas ANO: 2014 BANCA: CESGRANRIO ORGAO: PETROBRAS
PROVA: TECNICO - TECNICO DE INFORMATICA (MODIFICADA)

108 U3 - Estrutura de Dados

Qual é a quantidade minima de movimentos entre as trés pilhas para
que a pilha P1, originalmente cheia, esteja preenchida de v(5) até v(1),
respectivamente, com os simbolos Q1, Q2, Q3, Q4, Q5?

U3 - Estrutura de Dados

109

110

Referéncias

BATTISTI. Linguagem C — Alocagdo dinamica. Disponivel em: <https://juliobattisti.com.
br/tutoriais/katiaduarte/cbasico009.asp>. Acesso em: 13 ago. 2017.

BERTOL, O. F. Disponivel em: <http://www.pb.utfpr.edu.br/omero/C/Exercicios/E/
PILHAAPO.Htm>. Acesso em: 13 ago. 2017.

IME. Busca em vetor ordenado. Disponivel em: <https://www.ime.usp.br/~pf/algoritmos/
aulas/bubi2.html>. Acesso em: 2 ago. 2017.

IME2. Ponteiros, ponteiros e vetores e alocacdo dinamica de memdria. Disponivel em:
<https://mww.ime.usp.br/~mms/macl222s2013/8%20-%20Ponteiros, %20%20ponteiros%20
e%20vetores’%20e%20alocacac’%20dinamica’20de’%s20memoria.pdf>. Acesso em: 13 ago.
2017.

LAUREANO, M. Estrutura de Dados com Algoritmos e C. Curitiba: Brasport, 2008.
SEDGEWICK, R.Algorithmsin C. 3. ed. Addison Wesley Longman, 1998.

TENENBAUM, M. A: LANGSAM: Y. AUGENSTEIN, M. J. Estrutura de Dados Usando C. S&o
Paulo: Pearson, 1995.

UFRJ. Estrutura de Dados e Algoritmos. Disponivel em: <http://www.cos.ufrj.br/~rfarias/
cosl21/filas.ntml>. Acesso em: 13 ago. 2017.

UFSC. Curso C. Disponivel em: <http://mtm.ufsc.br/~azeredo/cursoC/aulas/cac0.html>.
Acesso em: 13 ago. 2017.

UNICAMP. Alocagdo Dinamica. Disponivel em: <http://www.ic.unicamp.br/~norton/
disciplinas/mc1022s2005/03_11.html>. Acesso em: 13 ago. 2017.

UNICAP. Algoritmos e Estrutura de Dados II. Disponivel em: <https://marciobueno.com/
arquivos/ensino/ed?2/ED2_11_Pesquisa.pdf>. Acesso em: 2 ago. 2017.

U3 - Estrutura de Dados

Unidade 4

Arvores e grafos

Gisele Alves Santana

Objetivos de aprendizagem

Nesta unidade, vocé sera levado a aprender sobre dois tipos de
estruturas de dados muito utilizados na area da computacao. Para
tanto, os objetivos desta unidade sao:

. Compreender o que sdo grafos e suas aplicacdes;
» Aprender sobre arvores e suas terminologias;

. Compreender as operacdes de insercdo e exclusao de nos
€m uma arvore;

. Conhecer os tipos de percursos em uma arvore;

. Aprender as formas de implementa¢cdes de uma arvore.

Secdo 1| Introducdo a grafos e arvores

Nesta secao, vocé estudara sobre os principais conceitos relacionados aos
grafos e as arvores, assim como algumas aplicacdes desses tipos de estruturas
de dados. Esta secao tambem apresenta as principais terminologias relacionadas
a Uma arvore e os tipos mais utilizados para a resolucao de problemas na area
computacional.

Secdo 2 | Arvore binaria de busca

Nesta secao, vocé vai aprender sobre o tipo mais utilizado de arvore, que € a
arvore binaria de busca; exemplos de codigos para a implementacao estatica e
dinamica; simulagdes das operacdes mais importantes para a manipulacdo dessas
arvores e, por fim, os tipos principais de percursos em uma arvore binaria de busca,
exemplificando graficamente cada um deles.

Introducao a unidade

Os grafos representam um tipo de estrutura de dados muito comum
nas aplicacdes computacionais, especialmente na implementacao de
jogos. Nesta unidade, serao apresentados alguns conceitos importantes
sobre esse tipo de estrutura, exemplificando matematicamente a
solucao de alguns conceitos relacionados aos grafos, como o calculo
do numero de vértices e arcos de um grafo.

OQutro tipo muito comum de estrutura de dados aplicado na
computacao sao as arvores, especialmente as arvores binarias de
busca. Uma arvore pode ser considerada binaria se todos os nos a
esquerda do no raiz forem menores que O nNo raiz, assim como se
todos 0s nNos a direita do no raiz forem maiores que 0 Mesmo.

Nesta unidade, serdo apresentadas duas maneiras deimplementacao
de uma arvore binaria de busca, porém, a implementacdo dinamica é
mais utilizada. Também serdo apresentados exemplos e simulacdes
envolvendo as operacdes mais importantes relacionadas a esse
tipo de arvore, assim como trechos de codigo na Linguagem C que
implementam essas operacdes para a manipulagao dessas estruturas
de dados.

Para finalizar, sera definido o conceito de percurso ou travessia de
uma arvore binaria de busca, apresentando e ilustrando quatro tipos
de percursos. Funcdes recursivas que implementam os percursos de
arvores binarias também serao exemplificadas.

114

Secaol

Introducao a grafos e arvores
Introducgédo a secao

Esta secdo apresenta e ilustra os principais conceitos relacionados
aos grafos e as arvores. Os grafos sao muito utilizados em aplicacoes
computacionais, especialmente na implementacdo de jogos. Ja as
arvores sao utilizadas para a organizacao de dados, principalmente
para proporcionar agilidade e rapidez na busca de uma informacao.

4.1 Grafos

Como ja foi visto na Unidade 1, as estruturas de dados auxiliam
Nna organizacdo das informacdes, de modo a serem registradas e
processadas pelo computador. Alguns exemplos de estruturas de
dados sao:

. Listas lineares.
. Vetores.

o Arores.

. Grafos.

. Etc.

Um grafo, ou também chamado de digrafo, € um conjunto de
vertices e arestas (arcos) que interligam pares de vértices distintos
TENEMBAUM: LANGSAM: AUGENSTEIN, 2004). Cada aresta de um
grafo € um par ordenado de vértices. O primeiro vértice é a ponta
inicial da aresta e o seqgundo € a ponta final. Uma aresta com a ponta
inicial "a” e a ponta final "b” &€ denotado por: a-b, que diz que o arco a-b
saide a e entraem b.

Diversos tipos de aplicacdes necessitam das estruturas dos grafos.
Por exemplo: quando se tem a necessidade de saber se existe um
caminho para ir de um objeto a outro, ou calcular a menor distancia
entre os objetos, ou até mesmo calcular quantos objetos podem ser
alcancados a partir de outro objeto.

As arvores sao consideradas como subconjunto dos grafos, pois
nessas estruturas existe um Uunico caminho que leva a qualquer no, ou
seja, nao ha possibilidade de se voltar a um no ja visitado a partir de seus
filhos (ndo possui ciclos).

U4 - Arvores e grafos

Os grafos sdo ferramentas muito utilizadas em jogos. Essas estruturas
podem ser usadas, por exemplo, para permitir que um personagem
caminhe de um ponto a outro de modo eficiente, ou para decidir a
proxima estratégia em um jogo, ou até mesmao para resolver um puzzle.
Os grafos sdo comumente aplicados para representar 0 conjunto de
caminhos que um personagem pode navegar no ambiente de um
jogo.

Na Figura 4.1, séo apresentados varios exemplos de grafos. Os grafos
podem ser conexos (a, b, ¢ e d) ou nao conexos (e, f). Um grafo € dito
conexo quando se pode tracar um caminho que parte de qualquer N6
e chega a qualquer outro (TENENBAUM et al,, 2004). Um grafo € dito
completo quando ha uma aresta entre cada par de seus vértices. Se as
arestas do grafo sao orientadas, o grafo € chamado de orientado.

Figura 4.1 | Exemplos de Grafos

(a) (b) (©

(d) (e) ®

Fonte: adaptada de Tenembaum, Langsam e Augenstein (2004).

@ Para saber mais

Neste video, ¢ ilustrada a implementacao do algoritmo de Dijkstra, que
representa outro tipo de método de busca em grafos. Disponivel em:
<https://www.youtube.com/watch?v=mdWIOWM4EDU>. Acesso em:
16 nov. 2016.

U4 - Arvores e grafos

115

116

4.1.1 Notagao Formal

Um grafo G pode ser formalmente definido como um conjunto de
Nnos ou vertices V interligados por um conjunto de arestas A. Pode-se
escrever formalmente da seguinte maneira:

G={V. A}

"Muitos grafos possuem pesos associados as arestas. Esse peso
pode representar O Ccusto necessario para se mover de um ponto a
outro em um grafo. Esse custo pode ser dado em funcao da distancia
entre os vértices ou pela dificuldade de locomocgdo” (TENEMBAUM:;
LANGSAM; AUGENSTEIN, 2004, p. 684).

4.1.2 Arcos

Para especificar um grafo, geralmente exibe-se o conjunto de seus
arcos. Por exemplo, o conjunto de arcos a seguir define um grafico
com o conjunto de vertices de O até 11: 0-5 0-6 2-0 2-3 3-6 3-10 4-1
5-25-10 6-27-87-118-18-410-3 11-8.

Ailustracao desse grafo pode ser observada na Figura 4.2.

Figura 4.2 | Grafo e seus arcos

O (6)

Fonte: adaptada de Tenembaum, Langsam e Augenstein (2004)

O numero de arcos de um grafo € dado pela equacao:

N*N-D
2

Onde: N-1 representa todos os vértices, excluindo ele mesmo, e a
divisdo por 2 significa duas arestas iguais (ida e volta).

Na Figura 4.3 sao apresentados exemplos de grafos com 1, 2 e 6 arcos.

U4 - Arvores e grafos

Figura 4.3 | Arcos e vértices

e ‘s’ oo

1 arco 2 arcos 6 arcos

Fonte: elaborada pela autora

‘Um grafo sera chamado de completo se todo par ordenado de
vertices distintos for um arco. Quando um grafo tem muitos arcos
em relacdo ao seu numero, ele é chamado de denso” (TENEMBAUM:
LANGSAM; AUGENSTEIN, 2004, p. 698). Por outro lado, se o grafo
POSSUI POUCOS arcos, € chamado de esparso. A razao entre os vértices
e 0s nos caracteriza se o grafo € denso ou esparso. Grafos esparsos
tém poucas conexdes por No e grafos densos possuem muitas. Na
Figura 4.4 sdo apresentados exemplos de grafos denso e esparso.

Figura 4.4 | Exemplo de grafo denso e esparso

Fonte: adaptada de Tenembaum, Langsam e Augenstein (2004).

4.1.3 Tipos de Grafos

"Existemn, basicamente, dois tipos de grafos: grafo nao direcional
e grafo direcional’” (TENEMBAUM; LANGSAM; AUGENSTEIN, 2004,
p. 7/02). Nos grafos ndo direcionais, as arestas ndo sdo direcionadas
ou ordenadas, ou seja, a aresta V1, V2" € a mesma aresta V2, V1,
conforme ilustrado na Figura 4.5.

U4 - Arvores e grafos 117

Figura 4.5 | Grafo ndo direcional

Fonte: elaborada pela autora

Os grafos direcionais sdo tambeém chamados de digrafos. Nesses
grafos, as arestas sao direcionadas ou ordenadas, ou seja, a aresta "V1,
V2" ¢é diferente da aresta V2, V1". A Figura 4.6 apresenta um exemplo
Fonte: elaborada pela autora.

de grafo direcional.
Figura 4.6 | Grafo direcional
4.1.4 Grau de um Vértice
'O grau € o numero de arcos que incidem sobre um vértice. Nos grafos

nao direcionados, © grau corresponde aoc NUMero de arcos que incidem
sobre o vértice” (TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 705).

Ja nos grafos direcionados, © grau € o numero de arestas que saem
dele mais o numero de arestas que incidem sobre ele. Um vértice ¢é dito
isolado quando seu grau € zero. Na Figura 4.7, o grau do vertice A € igual a

Z€ero, pois Nao existem arestas saindo ou entrando nele.
Figura 4.7 | Graus de um vértice

Grau(A) =0
Grau(B) = 2
Grau(C) =1
Grau(D) =1

Fonte: elaborada pela autora.

118 U4 - Arvores e grafos

4.1.5 Ciclo

'E um grafo ndo direcionado, um caminho (vO, v1, .., v) forma
um ciclo se vO = v_ e o caminho contém, pelo menos, trés arestas’
TENEMBAUM: LANGSAM; AUGENSTEIN, 2004, p. 700).

Em um grafo direcionado, um caminho (vO, v1, .., v) forma um
ciclo se vO = v_e o caminho contém, pelo menos, uma aresta. Os
grafos que ndo possuem ciclos sdo chamados de aciclicos, ja os grafos
que possuem ciclos sao chamados de ciclicos (MIZRAHI, 2006, p. 121).

O self-loop € um ciclo de tamanhoiguala 1. Na Figura 4.8, analisando
o ciclo "B C D', percebe-se que os caminhos ‘BC D", "CDB" e'DBC”
formam o mesmo ciclo.

Figura 4.8 | Ciclos de um grafo

Fonte: elaborada pela autora.

Analisando o ciclo "“A D C B A" da Figura 4.9, percebe-se que existe
um Self-loop no vértice "C", sendo que os caminhos ‘A D B A", "D B A
D"e "B AD B" formam o mesmo ciclo.

oeo

4.1.6 Componentes Conectados

Figura 4.9 | Self-loop

Fonte: elaborada pela autora.

Um grafo ndo direcionado € conectado quando cada par de vértices
estd conectado por um caminho. Os componentes conectados sao
as porcoes conectadas de um grafo. Um grafo nao direcionado é

U4 - Arvores e grafos

119

120

conectado se ele tem exatamente um componente conectado. Na
Figura 4.10, o grafo ndo € conectado, pois ndo e possivel alcancar
o vertice A a partir dos vertices B, C ou D. O grafo {C D B} € um
componente conectado do grafo. Inserindo-se o arco {A B}, o grafo
passa a ser conectado.

Figura 4.10 | Componentes conectados

Fonte: elaborada pela autora.

4.1.7 Pontos de Articulagao

Os pontos de articulacdo sao vértices que, se forem removidos
do grafo, produzirdo pelo menos dois componentes conectados.
Na Figura 4.11, se o vértice 5" for retirado do grafo, produzira dois
componentes conectados: (124 3)e (678 9).

Figura 4.11 | Pontos de articulacdo

Fonte: elaborada pela autora.

Quando os grafos ndo possuem nenhum ponto de articulacdo, sao
chamados de grafos biconectados.

U4 - Arvores e grafos

4.1.8 Caminho e Comprimento

‘Um caminho de um vértice a para um vértice b em um grafo G =
(V:E) € uma sequéncia de vértices" (v, v, v,, .., v) talque:a = a, e b =
b, (TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 701).

O comprimento de um caminho € o numero de arestas percorridas
por esse caminho. Se existir um caminho ¢ de a para b, entdo b
€ alcancavel a partir de a via ¢. Um caminho € simples se todos os
vertices do caminho forem distintos. A origem de um caminho € o
primeiro vértice, ja o término € o seu ultimo vértice. Um caminho é
fechado se sua origem coincide com seu término e seu comprimento
€ maior que 1.

Na Figura 4.12, tem-se um caminho simples. O caminho (C B D)
tem comprimento igual a 2 € a aresta D ¢ alcangavel a partirde C. Ja a
aresta A ndo ¢é alcancavel a partir de nenhum vértice.

Figura 4.12 | Caminhos de um grafo

® ©
& (©

Fonte: elaborada pela autora

O comprimento de um caminho é o numero de termos da
sequéncia de vertices menos um. O comprimento de um caminho
como “4-7-5-7-5-7, por exemplo, € igual a 5. Se o caminho é
simples, seu comprimento € igual ao seu numero de arcos. Observe
o grafo apresentado na Figura 4.13, que possui diversos caminhos, por
exemplo: 0-2-7-3-6; 1-3-6-2-7-3-6-4; 2-7-5-4-7-3 etc.

Figura 4.13 | Caminhos e comprimento

-

Fonte: adaptada de Tanembaum, Langsam e Augenstein (2004).

U4 - Arvores e grafos

121

(#) Para saber mais

Aapostilaa sequirilustra as operacdes mais utilizadas para a manipulagdo
de grafos e implementacdo de algoritmos de busca. Disponivel em:
<http://www.dainf.ct.utfpr.edu.br/~kaestner/MatematicaDiscreta/
Conteudo/Algoritmos/l13-graph-search.pdf>. Acesso em: 19 set. 2017.

4.2 Arvores

‘Uma arvore € um tipo de estrutura de dados no qual os dados
ficam dispostos de maneira hierarquica. Pode-se dizer que arvores sdo
grafos nos quais existe apenas uma origem e Ndo se pode formar ciclos”
(TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 303). Existem varios
tipos de arvores, definidos a partir da quantidade de filhos” que um
elemento ou NO pode ter e de como 0s elementos sao arranjados dentro
da arvore. Na computacao, as arvores sao utilizadas em varias situacdes,
como: estruturas de diretorios em SO, indices para arquivos em disco,
estrutura de um arquivo HTML, arvore de decisao em jogos etc. Na Figura
4.14 pode ser observada a estrutura do diretorio do Disco Local C.

Figura 4.14 | Estrutura dos arquivos do diretério C

@v’ﬁ » Computador » Disco Local (C:) »

Organizar v Compartiharcom v Gravar Nova pasta
T Nome : Data de modificag... Tipo Tamanho
& Downloads Arquivos de Programas 24/10/2016 16:29 Pasta de arquivos
&l Locais Dev-Cpp 07/07/2016 16:43 Pasta de arquivos
B Area de Trabalho Intel 08/03/2016 10:45 Pasta de arquivos
Perflogs 13/07/2009 23:37 Pasta de arquivos
w4 Bibliotecas Spacekace 14/03/2016 14:45 Pasta de arquivos
B Documentos Usudrios 15/10/2016 03:26 Pasta de arquivos
(=] Imagens Windows 15/10/2016 03:22 Pasta de arquivos
&) Misicas
B videos

1% Computador
ﬂ Disco Local (C)

‘i Rede

Fonte: elaborada pela autora

A estrutura dos arquivos do diretorio C pode ser representada,
internamente, por meio de uma arvore, conforme ilustrado na Figura
4.15.

122 U4 - Arvores e grafos

Figura 4.15 | Representacéo da estrutura dos arquivos do diretodrio C

/ \

eaona /TN
rArquwos de “ f \
\ Programa | \

__/ _, /)

Fonte: elaborada pela autora.

Uma arvore € formada por um elemento principal, denominado
raiz. A raiz possui ligacdes com outros elementos, chamados de
filhos ou ramos. "Os ramos sao ligados a outros elementos que, por
sua vez, também possuem outros ramos” (TENEMBAUM; LANGSAM:;
AUGENSTEIN, 2004, p. 304). O elemento de uma arvore que nao
pOssui ramos & conhecido como no, folha ou no terminal. As arvores
possuem a tendéncia de crescer para baixo: a raiz fica no ar enquanto
as folhas se enterram no chao. Na Figura 4.16 € apresentado um
exemplo de arvore e seus respectivos elementos.

Figura 4.16 | Arvore e seus elementos

N6 raiz: A
Nés: A,B,C,D,E,F,G
Folhas: C,E,F,G

Filhos de

Fonte: elaborada pela autora.

U4 - Arvores e grafos

123

124

A seguir serao apresentadas as terminologias utilizadas para designar
0s elementos de uma arvore:

Subérvore: cada no da arvore é a raiz de uma subarvore.
Grau: representa o numero de subarvores de um no.

Folha: € o no de grau igual a zero, ou seja, © NG que N3O POSSUI
filhos.

Nivel: a raiz da arvore tem nivel O (zero) e o nivel de qualquer
outro no na arvore € um nivel a mais que o nivel de seu pai.

Altura (profundidade): é definida como sendo o nivel mais alto
da arvore.

Na Figura 4.17 séo exemplificadas algumas terminologias de uma
arvore que possui altura igual a 3, correspondendo ao seu nivel mais

alto.

Figura 4.17 | Terminologias de uma arvore

N6 [Grau [Nivel
2 0

Mmoo w >
ol=|lonv|o

1
1
2
2
3

Fonte: elaborada pela autora

0 Questdo para reflexao

Vocé consegue citar as vantagens da implementacao de arvores para a
organizagao de dados?

4.2.1 Formas de Representacao Grafica

Existem diversas formas para a representacao grafica de uma arvore.
A maneira mais utilizada € a representacao por meio de grafos, ilustrada
na Figura 4.18.

U4 - Arvores e grafos

Figura 4.18 | Representacdo por grafos

Fonte: elaborada pela autora.

Outra maneira de se representar uma arvore € por meio de um
diagrama de Venn, conforme ilustrado na Figura 4.19.

Figura 4.19 | Representacdo por diagrama de Venn

Fonte: elaborada pela autora.

Uma arvore tambéem pode ser representada por meio de parénteses
aninhados, de acordo com a Figura 4.20.

Figura 4.20 | Representacdo por parénteses aninhados

(A (B, E F),C(G))

Fonte: elaborada pela autora.

4.3 Arvore Binaria

Na estrutura de dados, existem diversos tipos de arvores, por exemplo:
arvore rubro-negra, AVLS, binaria etc. Nesta se¢do, serdo estudadas as
arvores binarias, "em que cada no pode ter no maximo duas subarvores’

U4 - Arvores e grafos

125

126

(TENEMBAUM: LANGSAM: AUGENSTEIN, 2004, p. 303). Dessa forma,
O grau de cada no pode ser 0, 1 ou 2. Em relacdo as denominacdes
utilizadas para as subarvores de uma arvore binaria, pode-se citar:

. Subarvore esquerda (E);
. Subarvore direita (D).

As arvores Dbinarias se subdividem em alguns tipos, cujas
caracteristicas serdo apresentadas a seguir.

4.3.1 Arvore Estritamente Binaria

Neste tipo de arvore binaria, cada no tem O (zero) ou 2 subarvores,
ou seja, nenhum no tem “filho unico”. A Figura 4.21 ilustra uma arvore
estritamente binaria.

Figura 4.21 | Arvore estritamente binaria

Fonte: elaborada pela autora.

4.3.2. Arvore Binaria Cheia

Nas arvores binarias cheias, todos 0s nos, exceto os nods do ultimo
nivel, ttm exatamente duas subarvores, conforme ilustrado na Figura
4.22.

Figura 4.22 | Arvore estritamente binaria

Fonte: elaborada pela autora

U4 - Arvores e grafos

4.3.3 Arvore Binaria Balanceada (AVL)

Uma arvore binaria € considerada balanceada quando, para cada no,
as alturas de suas subarvores esquerda e direita diferem de, no maximo,
uma unidade. Essa diferenca € chamada de fator de balanceamento.
Dessa maneira, cada n® de uma arvore balanceada pode ter fator
de balanceamento entre -1 e +1. Idealmente, uma arvore binaria €
perfeitamente balanceada quando todos os seus nos tém fatores de
balanceamento nulos.

4.3.4 Arvore Binaria Completa

A arvore binaria completa € um tipo de arvore com grau O ou 2, na
qual seus nos folhas podem estar apenas no ultimo e No penultimo
nivel, conforme observado na Figura 4.23.

Figura 4.23 | Arvore binaria completa

Fonte: elaborada pela autora.

Finalizando a se¢do

Nesta secao, vocé aprendeu sobre os grafos, que representam
um tipo de estrutura de dados muito comum nas aplicacdes
computacionais; alguns conceitos importantes sobre esse tipo de
estrutura, exemplificando a solucao de algumas definicdes relacionadas
aos grafos; conceitos basicos, terminologias de uma arvore e os
principais tipos delas aplicados na resolucdo de alguns problemas
especificos.

U4 - Arvores e grafos

127

128

Atividades de aprendizagem

1. Vocé aprendeu os principais conceitos relacionados aos grafos, incluindo
a definicdo de arestas. Dessa maneira, quantas arestas tem um grafo com
vértices de graus 5; 2; 2; 2; 2; 1?7

A) 2.

B) .

C) 4.

D)7.

E) 5.

2. Na estrutura de dados, existem diversos tipos de arvores, por exemplo:
arvore rubro-negra, AVLS, binaria etc. Nas arvores binarias, cada né pode ter,
no maximo, duas subarvores. Dessa forma, o grau de cada né pode ser 0O, 1
ou 2. Analise a arvore binaria ilustrada a seguir:

Em relacao a ela, é correto afirmar que:

A) A raiz da arvore é representada pelo no 7.
B) Os filhos do nd 3 sdo osnds5e 7.

C) Os pais do nd 8 sdo os nds 6 e 9.

D) Os ndés 1, 2 e 4 sdo nos folhas.

E) A raiz da arvore é representada pelo no 4.

U4 - Arvores e grafos

Secao 2

Arvore binaria de busca
Introducdo a secao

Nesta secao, vocé vai aprender que uma arvore pode ser
considerada binaria se todos 0s nos a esquerda do no raiz forem
menores que ele, bem como se todos 0s Nos a direita forem maiores.
Serdo apresentadas duas maneiras de implementacao de uma arvore
binaria de busca, assim como exemplos e simulacdes envolvendo as
operacdes mais importantes relacionadas a esse tipo de arvore. Serdo
exemplificados trechos de codigo na Linguagem C que implementam
algumas operacdes para a manipulacdo dessas estruturas de dados e,
para finalizar, sera definido o conceito de percurso ou travessia de uma
arvore binaria de busca, exemplificado por meio de funcdes recursivas.

4.4 Arvore Binaria de Busca

A arvore binaria de busca (ABB) € um tipo de arvore binaria, na
qual todas as chaves (conteudo dos nos) da subarvore esquerda
s30 menores que as chaves (conteudos dos nods) do elemento raiz”
(TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 303). Da mesma
forma, todas as chaves da subarvore direita sdo maiores que a chave
do no raiz.

Os elementos de uma arvore binaria de busca sdo:

. NOs: sao todos 0s itens armazenados em uma arvore.

. Raiz: ¢ o no do topo da arvore.

. Filhos: sao 0s Nos que vém depois dos outros Nos.

. Pais: sao 0s NOs que vém antes dos outros Nos.

. Folhas: sdo 0s nos que nao tém filhos (ultimos nos da arvore).

A Figura 4.24 ilustra um exemplo de arvore binaria de busca.

U4 - Arvores e grafos

129

130

Figura 4.24 | Arvore binaria de busca

Fonte: elaborada pela autora

Para a arvore apresentada na Figura 4.24, tem-se:
. Raiz: no 4.

. Filhos: 0 no 3 ¢ filho do no 2.

. Pais: 0 N6 8 € paidos nos 6 e 9.

. Folhas: 1, 3,5, 7e9.

Nesta secdo, todas as implementacdes das operacdes serao
baseadas em arvores binarias de busca, uma vez que representam o
tipo de arvore mais utilizado e difundido na literatura e em aplicacoes
cotidianas.

4.5 Implementac&o Estatica de uma Arvore Binaria de Busca

Na implementagado estatica de uma arvore binaria de busca, os Nos
Sao armazenados por nivel em um vetor. Assim, se um no ocupa a
posicao i na arvore, seus filnos diretos estarao nas posicoes:

. 2i+1: nds a esquerda.

. 2i+2: nos a direita.

Como vantagem da utilizacéo desse tipo de implementacao, pode-
se citar a economia de espaco de memoria, ja que 0 espaco reservado
€ somente para o armazenamento do conteudo de cada no. Quanto a
desvantagem, a maior delas esta associada aos espacos vazios que se
ddo quando a arvore nado for completa por niveis, ou sofrer eliminacdo
de nos.

Geralmente, as operacdes basicas para manipulacdo de arvores
implementadas de forma estatica sao:

. Criacdo de uma arvore vazia;

U4 - Arvores e grafos

. Definicao de um no;

. Verificacao de arvore vazia;

. Impressao dos nos da arvore;

. Exclusao dos elementos da arvore.

Na Figura 4.25, € demonstrado um exemplo de arvore binaria de
busca e a simulacdo de implementacao estatica da mesma.

Figura 4.25 | Implementacdo estatica

2*2+4+2=6
2*2+1=5

A/B|/C|D EF G

2*1+1=3

2%1+2=4

Fonte: elaborada pela autora

4.5.1 Definicdo de um nd

O primeiro passo para a implementacao de uma ABB de maneira
estatica € a definicao das informacdes que serao armazenadas em
cada no da arvore. Outro ponto importante é determinar se um
elemento do vetor contém um no valido ou esta vazio. Uma solucao
€ inicializar as posicdes vazias do vetor com o valor -1. Porém, essa
solucao funciona apenas no caso de 0s elementos armazenados NOs
nos da arvore serem sempre positivos. Outra solucao € criar um campo
adicional chamado “usado’. Assim, cada no pode ser representado por
uma struct, conforme codigo a seguir:

typedef struct {
int info;
int usado;
} arvBinaria [MaxElem];

4.5.2 Inicializacao

Para a inicializacdo de uma ABB ¢é aconselhavel a criacdo de uma
funcdo para inicializar o vetor. A inicializagcdo deve preencher todos
0s campos usados do vetor como valor ‘0" para que os elementos

U4 - Arvores e grafos 131

132

possam ser inseridos posteriormente. Deve-se também inicializar o
campo info com “0" para indicar que ndo ha nenhuma informacao
nesse campo. A seqguir, sera apresentado um exemplo de fun¢do que
realiza a inicializagcdo de uma ABB.

void inicializa ()
{
inti;
for (i = 0; i < MaxElem; i ++)
arvBinaria [i].info = O;
arvBinaria [i J.usado = 0;
e
}

4.5.2 Insercao de Nos

Para a insercao de elementos em uma arvore estatica, deve-se
pensar que 0s NOs serao armazenados por nivel em um vetor. Assim,
se um no ocupa a Posicao i na arvore, entao seus filhos diretos estao
nas posicoes:

. 2i+1: nos a esquerda

. 2i+2: nos a direita

O novo no € sempre inserido como um no folha. Para facilitar o
entendimento da operacao de insercao, acompanhe a simulacao da
insercao de alguns Nds em uma arvore binaria de busca. Considere
a ABB da Figura 4.26, que contém os nos E, B e J, sendo o no "'E" a
raiz desta arvore. Suponha que se deseja inserir a letra "‘G": essa letra é
comparada primeiramente com o no raiz, e como a letra "G” é maior
que a letra "E", esse novo no sera inserido na subarvore direita. No nivel
abaixo, a letra "G" agora € comparada com a letra “J’, e como ‘G" é
menor que “J’, 0 Nnovo No sera inserido a esquerda de "J*. Como nao
existem mais nos a esquerda de “J’, 0 novo N € inserido nesta posicao.
Lembre-se sempre gue 0S NoVos NOs somente sao inseridos como NOs
folhas.

U4 - Arvores e grafos

Figura 4.26 | Insercdo do n6 G

: Ponto de
insergao

Fonte: elaborada pela autora

Agora, suponha que se deseja inserir um Novo NG que contém a
chave "A". Primeiramente, o no "A” é comparado com a raiz (n6 E),
e como ‘A" é menor que ‘E’, 0 novo no sera inserido na subarvore
esquerda. Descendo um nivel, o no "A" é comparado com o no ‘B, e
como ele € menor que “B’, € inserido a esquerda, conforme processo
ilustrado pela Figura 4.27.

Figura 4.27 | Insergdo do né A

—

Ponto ge
insergdo

Fonte: elaborada pela autora.

Em outra situacao, o N6 com chave D" sera inserido nessa
arvore. Da mesma maneira, esse NO € comparado com o no raiz, e
como € menor, vai ser inserido na subarvore esquerda. Seguindo o
processo de insercao, o novo N6 € comparado com o no ‘B”, e como
tem valor maior, € inserido a direita do no raiz, conforme ilustrado na
Figura 4.28.

U4 - Arvores e grafos

133

Figura 4.28 | Insercdo do n6 D

Ponto de "

inser¢do

Fonte: elaborada pela autora.

Todos 0s outros nos serdo inseridos da maneira ilustrada nas figuras
anteriores, seguindo 0s Passos:

. Procurar por um local para inserir © novo No, comegando a
comparacao a partir do no raiz.

. Para cada no raiz de uma subarvore, compare: se 0 NoOVO NO
possui um valor menor do que o valor do no raiz, caminhar
para a subarvore esquerda; se o valor € maior que o valor no
Nno raiz, caminhar para a subarvore direita.

. Se uma referéncia (filho esquerdo/direito de um no raiz) nula é
atingida (no folha), inserir o novo Nd como sendo filho do no
raiz.

Agora, serd exemplificada a insercdo de alguns elementos inteiros
em uma arvore vazia. Considere a insercdo do conjunto de numeros
na sequéncia: 17, 99, 13, 1, 3, 100. No inicio, a ABB esta vazia, ou seja,
nao possui nenhum no. O primeiro No a ser inserido € 0 NG com o
valor "17". Nesse caso, esse no € inserido na raiz, conforme observado
na Figura 4.29.

Figura 4.29 | Insercdo do né 17

Raiz
T

Fonte: elaborada pela autora.

Ainsercao do valor 99" inicia-se na raiz, comparando-se esse valor
com o valor "17". Como 99" é maior que 17", 0 novo nod deve ser

134 U4 - Arvores e grafos

inserido na subarvore direita do no, contendo o valor “17°, sendo que
esta subarvore esta inicialmente nula. Esse processo ¢ ilustrado na
Figura 4.30.

Figura 4.30 | Insergdo do nd 99

Raiz

Fonte: elaborada pela autora.

A inser¢cdo do N6 com o valor “13" inicia-se na raiz, comparando-se
o valor 13" com o valor “17°. Como “13" € menor que ‘177, 0 novo N6
deve ser inserido na subarvore esquerda do no raiz. Ja que o N6 17 nao
possui descendente esquerdo, © Novo No sera inserido Na arvore nesta
posicao, conforme ilustrado na Figura 4.31.

Figura 4.31 | Insercdo do no 13

Raiz

Fonte: elaborada pela autora.

Para inserir o no de valor "1, repete-se 0 mesmo procedimento:
compara-se o valor "1" com o valor “17"; como “1" € menor que "1/,
O novo Nno sera inserido na subarvore esquerda. Chegando nessa
subarvore, encontra-se o no 13", e como “1" € menor que 13", esse
Nno sera inserido Nna subarvore esquerda de “13°, conforme Figura 4.32.

Figura 4.32 | Insercdo do no 1

Fonte: elaborada pela autora.

U4 - Arvores e grafos

135

136

Para inserir o valor 3, deve-se repetir o procedimento:

. Como 3<17, sera inserido na subarvore esquerda.

. Chegando na subarvore esquerda, encontra-se o no 13.
. Como 3<13, desce mais um nivel a esquerda.

. Chegando a subarvore esquerda, encontra-se o no 1, e como
3>1, esse nO sera inserido na subarvore direita, conforme
ilustrado na Figura 4.33.

Figura 4.33 | Insercdo do no 3

Raiz

Fonte: elaborada pela autora.

Repete-se o procedimento para realizar a insercao do elemento
100:

. Compara-se o valor do no a ser inserido com o valor do no
raiz. Como 100 > 17, caminha-se para a subarvore direita.

. Como 100 é maior que 99, caminha-se para a direita e 0 novo
no e inserido, conforme observado na Figura 4.34.

Figura 4.34 | Inser¢éo do no 100

Raiz
—_—

Fonte: elaborada pela autora

U4 - Arvores e grafos

e Questado para reflexao

Vocé consegue imaginar a vantagem principal relacionada a busca de
dados em uma arvore binaria de busca?

4.5.3 Implementac3o Dindmica de uma Arvore Binaria de Busca

‘A implementacao dinamica € o tipo mais utilizado para manipulacao
de arvores binarias de busca” (TENEMBAUM; LANGSAM: AUGENSTEIN,
2004, p. 321). A Figura 4.35 apresenta a estrutura de um nd que possuli
um campo em que armazena o conteudo e dois ponteiros: ponteiro da
direita e da esquerda. Na figura também pode-se visualizar a representacao
grafica de uma arvore, assim como a representacaoc com nos dinamicos.

Figura 4.35 | Implementacgdo Dinamica

Estrutura de um N T1]]J]e]

DID—l
s

Representacgdo Grafica Representagdo Com Né6s

Fonte: elaborada pela autora

‘A estrutura de dados para uma arvore binaria € uma estrutura
dinamica, assim como as listas encadeadas, em que cada no e
representado por um registro,” contendo (TENEMBAUM; LANGSAM;
AUGENSTEIN, 2004, p. 310):

. um campo chave do tipo inteiro, string etc.;
. um ponteiro para as subarvores esquerda e direita;

. outros campos de dados, de acordo com o problema de
aplicacao.

No codigo a seguir, € apresentado um exemplo de definicdo de um
Nno para uma ABB.

U4 - Arvores e grafos

137

struct arv {
char info;
struct arv* esq;
struct arv* dir;

%

4.5.3.1 Criacdo de uma Arvore

Para a criacao de uma arvore binaria de busca é utilizada uma
estrutura em que € alocado espaco para O armazenamento dos nos da
arvore, conforme codigo a seguir:

Arv* arv_cria (char c, Arv* e, Arv* d)
{
Arv* p=(Arv*)malloc(sizeof(Arv));
p->info = c;
p->esq = e;
p->dir =d;
return p;

4.5.3.2 Insercdo de Nos

A insercao de um novo N em uma ABB consiste em determinar a
POSICA0 em que esse NO ira ocupar na arvore, cuja raiz € apontada por
um ponteiro.

Se o ponteiro for nulo, entédo a arvore esta vazia € © Novo NO se
tornara a raiz da arvore, ou seja, O ponteiro passara a apontar para
esse novo No. Segundo Tenembaum, Langsan e Augenstein (2004),
algumas regras de inser¢cao para esse caso sao:

. O processo de insercdo parte do no raiz (supondo que ele ja
exista, caso contrario, © Novo NO serad o elemento a ser inserido
na raiz).

. A partir do critério especifico de ordenacdo da arvore, decide-
se qual subarvore sera percorrida.

. Dentro da nova subarvore repete-se o procedimento,
considerando sua raiz, até que se chegue a uma subarvore
vazia (sem raiz).

Se o ponteiro do No raiz nao for nulo, trés situacdes podem ocorrer:

. A chave do novo n6 € menor que a chave da raiz, logo, © Novo
Nno somente podera ser inserido na subarvore esquerda da raiz.

138 U4 - Arvores e grafos

Nesse caso, compara-se novamente o Nnovo elemento com a
raiz da subarvore esquerda e as mesmas trés situacdes podem
ocorrer.

. Achavedonovonoéigualachavedaraize, consequentemente,
esse Novo NO Nao podera ser inserido, pois uma arvore binaria
de busca somente admite uma ocorréncia de cada chave.

. A chave do novo no € maior do que a chave da raiz. Entdo,
O Novo NO terd que ser inserido na subarvore direita da raiz.
Nesse caso, o valor da chave do novo no € comparado com
a raiz da subarvore direita, sendo possiveis as trés situacdes
descritas.

Exceto no caso de ocorréncia da situacado de chave ja existente, o
processo e repetido recursivamente ateé que se encontre uma subarvore
vazia (ponteiro nulo). Lembrando que todos 0s nos serdo sempre a raiz
de uma subarvore vazia, ou seja, 0S NOS sempre sdo inseridos Como
nos folhas.

A seqguir, € apresentada uma sugestao de codigo para a funcao de
insercao de elementos em uma arvore binaria de busca.

void inserir (struct No **pRaiz, int numero)

{
if(*pRaiz == NULL){
* pRaiz = (struct No *) malloc(sizeof(struct No));
(*pRaiz)—pEsquerda = NULL,;
(*pRaiz)—pDireita = NULL,
(*pRaiz)—numero = numero;

}

else {
if(numero <(*pRaiz)—numero)
inserir(&(*pRaiz)—pEsquerda, numero));
else
inserir(&(*pRaiz)—pDireita, numero));

4.5.3.3 Verificacdo de uma Arvore Vazia

"A fungao de verificagdo indica se uma arvore € ou Ndo vazia, ou
seja, compara o valor do ponteiro da raiz da arvore com o valor nulo”
(TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 308). Se o ponteiro
tiver o valor igual a nulo, entdo a arvore esta vazia, conforme o codigo
a sequir:

U4 - Arvores e grafos

139

140

int arv_vazia (Arv* a)

{
}

return a == NULL,;

4.5.3.4 Liberagcdo de Memoria

A funcao para liberacdo de memoria alocada por uma arvore possuli
algumas caracteristicas (TENEMBAUM: LANGSAM; AUGENSTEIN, 2004,
p. 336):

. As subarvores devem ser liberadas antes de se liberar o no raiz.
. Retorna uma arvore vazia, representada por NULL.

A sequir, sera apresentado um exemplo de funcao em C que realiza
a liberacao de memoria ocupada por uma ABB.

Arv* arv_libera (Arv* a)
if (larv_vazia(a))

arv_libera(a->esq); / libera sub-arvore da esq.
arv_libera(a->dir); // libera sub-arvore da dir.
free(a); // libera raiz

return NULL;
}

A funcdo de impressao dos elementos de uma arvore percorre-a
recursivamente, visitando todos os nos e imprimindo seus conteudos
ou chaves, conforme demonstrado no codigo a sequir.

void arv_imprime (Arv* a)
if (!arv_vazia(a))

printf("%c ", a->info); // mostra raiz
arv_imprime(a->esq); / mostra sub-arvore esq
arv_imprime(a->dir); // mostra sub-arvore dir
}
}

U4 - Arvores e grafos

4.5.3.6 Exclusdao de Nos

Para excluir um no de uma arvore binaria de busca, deve-se levar
em conta trés casos distintos: exclusdo na folha, exclusdo de um no

com 1 filho e exclusao de um no com 2 filhos. Os trés casos serdo
apresentados a seguir.

a) Exclusdo na folha

A exclusao de um no na folha € o caso mais simples de remog¢ao,

pois basta remover o no folha da arvore. Nesse caso, 0s ponteiros da

esquerda e direita do no pai sdo “setados” para NULL. A Figura 4.36
ilustra o processo de exclusao de um no folha, no caso, o no "G". Os
nos ‘A" e ‘D" também podem ser removidos desta forma.

Figura 4.36 | Exclusdo de um no folha

Ny

Fonte: elaborada pela autora.

b) Exclusdo de um né com 1 filho

Ao excluir um no que possui um filho, esse filho assume (sobe)
a posicao do pai. Nesse caso, 0 ponteiro apropriado do pai passa a
apontar para o filho, conforme ilustrado na Figura 4.37.

Figura 4.37 | Exclusdo de um n6 com 1 filho

Fonte: elaborada pela autora.

U4 - Arvores e grafos 141

142

c) Exclusdo de um né com 2 filhos

Nesse caso de exclusdo, pode-se proceder de duas maneiras:

. Substituir o valor do nd a ser retirado pelo valor sucessor (0 nd
mais a esquerda da subarvore direita).

. Substituir o valor do no pelo valor antecessor (0 N® mMais a
direita da subarvore esquerda) e, assim, remover-se-3 0 no
sucessor (ou antecessor).

Os passos para a remocao de um no com dois filhos podem ser

descritos por:

. Encontrar o elemento que precede o elemento a ser retirado

na ordenacdo. Isso equivale a encontrar o elemento mais a
direita da subarvore a esquerda;

. Trocar a informacao do no a ser retirado com a informacao do
no encontrado;

. Excluir o nd encontrado.

Na Figura 4.38, deseja-se remover o no de valor “30". Esse no
POSsUi cComMo sucessor imediato o valor "35" (nd mais a esquerda da sua
subarvore direita). Excluindo o no de valor “30", 0 no de valor “35" sera
promovido no lugar do no a ser excluido, enquanto a sua subarvore
direita serd promovida para subarvore esquerda do nd com valor "40".

Figura 4.38 | Exclusédo de um no com 2 filhos

——————

Fonte: elaborada pela autora.

U4 - Arvores e grafos

A sequir, sera apresentada uma func¢ao que realiza os trés tipos de
exclusdes de nos apresentados nesta se¢do.

Arv* exclusao (Arv*r, int v) {
if (r == NULL)
return NULL;
else if (r->info > v)
r->esq = retira(r->esq, v);
else if (r->info <v)
r->dir = retira(r->dir, v);
else { // achou o elemento
if (->esq == NULL && r->dir == NULL) { // elemento sem filhos
free (r); r=NULL;
else if (r->esq == NULL) { // so tem filho a direita

Arvit=r,
r=r->dir; free (t); }

else if (r->dir == NULL) { // s6 tem filho a esquerda
Arvet=r,

r=r->esq; free () }
else { /I tem os dois filhos
Arv* pai=r;
Arv* f = r->esq;
while (f->dir != NULL) {
pai = f;
f=f->dir;, }
r->info = f->info; // tfroca as informacdes
f->info=v; r->esq = retira(r->esq,v);
}
}

returnr;

@ Para saber mais

Este video contém um breve apanhado sobre o funcionamento
basico dos algoritmos de insercdo e remogao de elementos de uma
arvore bindria de busca. Disponivel em: <https://www.youtube.com/
watch?v=XZ0OMEDhb4oE>. Acesso em: 19 nov. 2017.

4.6 Percursos

"Percurso € o caminho realizado pelos nos da arvore com o objetivo de
consultar ou alterar ainformacao neles contida” (TENEMBAUM; LANGSAM;
AUGENSTEIN, 2004, p. 510). Existem quatro tipos de percursos:

U4 - Arvores e grafos 143

Percurso Pré-ordem.
Percurso In-ordem.
Percurso Pos-ordem.
Percurso em Nivel.

A seguir serdo apresentados os principais tipos de percursos.
4.6.1 Percurso Pré-Ordem (R, E, D)

Neste percurso, visita-se primeiramente a raiz e depois as subarvores
esquerda e direita, respectivamente. O percurso € iniciado pela raiz da
arvore; assim que o no é visitado, o valor € mostrado (12 passagem).
Dessa maneira, na arvore ilustrada na Figura 4.39 o resultado do
percursoe: 1,2, 4,5,3,6,7.

Figura 4.39 | Percurso Pré-Ordem

Fonte: elaborada pela autora

No codigo a seguir, tem-se uma fungao recursiva, em que €
impresso o conteudo de cada no da arvore binaria, percorrendo a
arvore na ordem: raiz, subarvore esquerda e subarvore direita.

void In_Ordem(Arv raiz)

if (raiz == NULL)

return O;
In_Ordem(raiz->esq);
printf("%d\n", raiz->info);
In_Ordem(raiz->dir);

}

4.6.2 Percurso In-Ordem (E, R, D)
No percurso In-Ordem, percorre-se primeiramente a subarvore

144 U4 - Arvores e grafos

da esquerda, visita-se a raiz e, por ultimo, percorre-se a subarvore da
direita. Assim, esse percurso € iniciado pela raiz da arvore, caminha-
se inicialmente pelos nos da esquerda, somente exibindo os valores
quando todos a esquerda ja tiverem sido visitados (22 passagem). O
resultado do percurso in-ordem da arvore ilustrada na Figura 4.40 é: 4,
2,516 37

Figura 4.40 | Percurso In-Ordem

Fonte: elaborada pela autora.

A sequir, sera apresentado um exemplo de codigo que realiza ©
percurso in-ordem, no qual a arvore € percorrida na seguinte ordem:
subarvore esquerda, raiz e subarvore direita.

void In_Ordem(Arv raiz)

if (raiz == NULL)

return O;
In_Ordem(raiz->esq);
printf("%d\n", raiz->info);
In_Ordem(raiz->dir);

}

4.6.3 Percurso Pés-Ordem (E, D, R)

"Neste tipo de percurso, percorre-se a subarvore da esquerda, logo
apos, percorre-se a subarvore da direita e, finalmente, visita-se a raiz"
(TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 520). Dessa maneira,
inicia-se o percurso pela raiz da arvore, caminhando a principio pelos
Nnos da esquerda e, em sequida, pelos Nos da direita, apenas exibindo
0s valores quando todos 0s Nos descendentes ja tiverem sido visitados
(32 passagem). O resultado do percurso pos-ordem da arvore ilustrada
na Figura4.41¢é:4,5 2,6,7, 3,1

U4 - Arvores e grafos

145

146

Figura 4.41 | Percurso Pés-Ordem

Fonte: elaborada pela autora.

No codigo a sequir, seré apresentada uma funcdo que realiza o
percurso pos-ordem, na qual a arvore € percorrida na sequinte ordem:
subarvore esquerda, subarvore direita e raiz.

void Pos_Ordem(Arv raiz)

{
if (raiz == NULL)
return O;
Pos_Ordem(raiz->esq);
Pos_Ordem(raiz->dir);
printf("%d\n", raiz->info);

4.6.4 Percurso em Nivel

Neste tipo de percurso, a arvore € percorrida no sentido de cima
para baixo e da esquerda para direita. "E o percurso mais facil de ser
compreendido, porém, o mais dificil de ser programado, ja que é
necessario utilizar uma fila em um algoritmo iterativo” (TENEMBAUM;
LANGSAM; AUGENSTEIN, 2004, p. 521). A seguir, um exemplo de
codigo que apresenta O percurso em nivel em uma arvore binaria. A
funcao utiliza uma fila implementada em um vetor fila, em que i € o
indice do primeiro item da fila e f-1 € o indice do ultimo elemento,
supondo que todos os elementos da fila sdo diferentes de NULL.

U4 - Arvores e grafos

void Nivel (Arv raiz) {
Arv *ila;
inti, f;
fila = malloc(count(raiz) * sizeof (Arv));
fila[0] = raiz;
i=0;f=1;
while (f > i) {
raiz = fila[i++];
printf("%d\n", raiz->info);
if (raiz->esq != NULL)
fila[f++] = raiz->esq;
if (raiz->dir |= NULL)
fila[f++] = raiz->dir;

free(fila);

@ Para saber mais

Nesta pagina, sdo mostradas as diferentes maneiras de se caminhar em
uma arvore por meio de animagdes de facil compreensao. Disponivel
em: <http://www.ufpa.br/sampaio/curso_de_estdados_1/arvores/
pagina_10_07_2001/aula26.htm>. Acesso em: 19 set. 2017.

Finalizando a se¢do

Neste tema, vocé aprendeu conceitos basicos sobre arvores
binarias, assim como alguns codigos responsaveis pela implementagao
de operacdes basicas com esse tipo de estrutura de dados. Algumas
simulacdes de insercao e exclusao de nos foram realizadas, ja que essas
operacdes sao consideradas as mais trabalhosas para implementacao.
Visto que as arvores podem ser implementadas de forma estatica ou
dinamica, foram apresentadas operacdes basicas paraa manipulacao de
ambas; solucdes para quatro tipos de percursos, exemplos de codigos
para sua implementacao e, por fim, foram também apresentados
alguns tipos de percurso em uma arvore binaria.

U4 - Arvores e grafos

147

Atividades de aprendizagem

1. Observe a arvore ilustrada na figura a sequir:

Em relacao a profundidade, nivel e parentesco de cada no, analise as
seguintes afirmativas:

[) And E estd no nivel 2.

[) O no H esta no nivel 3.

1) O paidond AéondB.

IV) A profundidade da arvore é 4.

Assinale a alternativa correta:

a) As afirmativas |, Il, Ill e IV estdo corretas.

b) Apenas as afirmativas | e Il estdo corretas.
c) Apenas as afirmativas | e lll estdo corretas.
d) Apenas as afirmativas Il e IV estdo corretas.
e) Apenas as afirmativas Ill e IV estdo corretas.

2. Realize os quatro tipos de percurso na arvore abaixo, escrevendo a
sequéncia dos nos visitados.

(4)

(2) (6)
@ ® & @

148 U4 - Arvores e grafos

Fique ligado

Nesta unidade, vocé aprendeu sobre os grafos, que representam
um tipo de estrutura de dados muito comum nas aplicacdes
computacionais, especialmente na implementacdo de jogos. Foram
apresentados alguns conceitos importantes sobre esse tipo de
estrutura, exemplificando matematicamente a solucao de alguns
conceitos relacionados aos grafos. Exemplos e simulagdes envolvendo
as operacdes mais importantes relacionadas aos grafos foram
apresentados.

Vocé tambem aprendeu 0s conceitos basicos sobre arvores
binarias, assim como alguns codigos responsaveis pela implementacao
de operacdes basicas com esse tipo de estrutura de dados. Algumas
simulacdes de insercdo e exclusao de nos foram realizadas, ja que essas
operacdes sao consideradas as mais trabalhosas para implementacao.
Foi visto que as arvores podem ser implementadas de forma estatica
ou dinamica; logo, foram apresentadas operacdes basicas para
manipulacao de ambas.

Finalizando, foram apresentados alguns tipos de percursos em uma
arvore binaria, com algumas solucdes para quatro tipos de percursos,
assim como exemplos de codigos para sua implementacao.

Para concluir o estudo da unidade

Nesta unidade, vocé conheceu os principais tipos de percursos
que podem ser realizados em uma arvore binaria de busca. Tambem
existem meétodos para busca de dados em grafos, como: busca em
profundidade (DFS) e busca em largura (BFS), sendo que a principal
diferenca entre essas buscas esta relacionada a estrutura de dados
auxiliar que é empregada. Enquanto a busca BFS utiliza uma fila de
vértices, a busca DFS utiliza uma pilha que armazena os vértices de
grafo.

Atividades de aprendizagem da unidade

1. Na arvore binaria de busca (ABB), todas as chaves (conteudo dos nés)
da subarvore esquerda sdo menores que as chaves (conteudos dos nods) do
elemento raiz. Da mesma forma, todas as chaves da subarvore direita sao
maiores que a chave do no raiz. Considere a ABB ilustrada na figura a seguir:

U4 - Arvores e grafos

149

150

Suponha a inclusao do no “13".

Em qual posicdo esse novo elemento sera incluido na arvore?
a) Na subarvore direita de 9.

b) Na subarvore esquerda de 9.

c) Na subarvore esquerda de 7.

d) Na subdrvore direita de 9.

e) Na subarvore esquerda de 5.

2. Na arvore binaria de busca (ABB), todas as chaves (conteudo dos nos)
da subarvore esquerda sdo menores que as chaves (conteudos dos nos) do
elemento raiz. Da mesma forma, todas as chaves da subarvore direita sao
maiores que a chave do no raiz. Considere a ABB ilustrada na figura a seguir:

Suponha a exclusdo do no "3".

O que acontecera com essa arvore?

a) O no 1 passa a ser o pai do no6 2.

b) O nd 2 passa a ser a raiz da arvore.

c) O ndé 1 é deslocado para a subarvore direita do no 2.
d) O no 3 é simplesmente removido.

e) A subarvore esquerda do no 4 deixa de existir

—_ = = =

U4 - Arvores e grafos

3. Os grafos representam um tipo de estrutura de dados muito comum
nas aplicagbes computacionais, especialmente na implementagdo de jogos.
Os grafos sdo compostos por vértices e arestas. O grau de um vértice € o
numero de arcos que incidem sobre um vértice. Neste contexto, analise o

grafo a sequir:

Qual é o grau do vértice C?

4. A caracteristica principal de uma &rvore bindria de busca (ABB) é a
existéncia de duas subarvores: esquerda e direita, o que facilita a pesquisa
por elementos. Suponha que foram inseridos, nesta sequéncia, os seguintes
elementos em uma ABB: 10, 5, 15, utilizando a seguinte fungao para a
insercao:

void inserir (struct No **pRaiz, int numero)
{
if(*pRaiz == NULL){
* pRaiz = (struct No *) malloc(sizeof(struct No));
(*pRaiz)—pEsquerda = NULL,;
(*pRaiz)—pDireita = NULL;
(*pRaiz)—numero = numero;
}
else {
if(hnumero <(*pRaiz)—numero)
inserir(&(*pRaiz)—pEsquerda, numero));
else
inserir(&(*pRaiz)—pDireita, numero));
}
}

Imagine que o proximo elemento a ser inserido € o no de valor 17. Na
execucdo dessa funcao para a insercdo desse novo elemento, € correto
afirmar que:

U4 - Arvores e grafos

151

I) Ainstrucéo if(numero <(*pRaiz)—numero) somente sera falsa quando o
valor a ser inserido for maior que o n6 sendo comparado.

I) A fungdo inserir, por ser recursiva, chama a si mesma até que o local
correto para a insercao do novo noé seja encontrado.

Il) Como o valor a ser inserido (valor 17) é maior que o valor do né raiz, a
navegacdo pela arvore é realizada por meio da subavore da direita do no
raiz.

IV) Ainstrucao if(*pRaiz == NULL) somente serd verdadeira se for encontrado
um no folha, ou seja, um local no qual o novo no sera inserido.

Assinale a alternativa correta.

a) apenas a afirmativa | esta correta.

b) apenas a afirmativa IV esta correta.

c) apenas as afirmativas Il e Il estdo corretas.

d) apenas as afirmativas | e Ill estdo corretas.

e) as afirmativas |, II, lll e IV estdo corretas.

5. Aestrutura ndo linear de maior aplicacdo em computacdo, provavelmente,
€ a estrutura de arvore ou simplesmente arvore. Analise a arvore ilustrada na

figura abaixo:

() (&) ®
@ ® O

A respeito dessa arvore, é correto afirmar que:
a) O no "A" possui nivel igual a 0 (zero).

b) O no “B” possui nivel igual a O (zero).

c) O nd "E" possui grau igual a 1 (um).

d) O nd “C" possui grau igual a 5 (cinco).

e) A altura da arvore é igual a 7 (sete).

152 U4 - Arvores e grafos

Referéncias

JUNIOR, Dilermando Piva; et al. Estrutura de Dados e Técnicas de Programacgdo. 1. ed.
Sao Paulo: Elsevier - Campus, 2014,

MIZRAHI, Victorine Viviane. Treinamento em linguagem C++. Sdo Paulo: Makron, 2006.

TENENBAUM, Aaron M.; LANGSAM, Yedidyah; AUGENSTEIN, Moshe J. Estruturas de
dados usando C. Sdo Paulo: Pearson Makron Books, 2004.

VELOSO, Pauloet al. Estrutura de dados. Rio de Janeiro: Campus, 1986.

U4 - Arvores e grafos

153

Anotacoes

Anotacoes

Anotacoes

Anotacoes

Anotacoes

Anotacoes

Anotacoes

SBN 978-85-522-0314-8

9"788552"203148" >

