
U
N

O
P

A
R

LIN
G

U
A

G
E

N
S D

E
 P

R
O

G
R

A
M

A
Ç

Ã
O

 E
 E

ST
R

U
T

U
R

A
 D

E
 D

A
D

O
S

Linguagens de
programação
e estrutura de
dados

Gisele Alves Santana
Nathalia dos Santos Silva
Merris Mozer

Linguagens de
programação e estruturas
de dados

Dados Internacionais de Catalogação na Publicação (CIP)

 Santana, Gisele Alves

	 ISBN 978-85-522-0314-8

	 1. Linguagem de programação. 2. Tipos abstratos de
 dados. I. Silva, Nathalia dos Santos. II. Mozer, Merris. II. Título.

	 CDD 001.6424

Gisele Alves Santana, Nathalia dos Santos Silva, Merris
Mozer – Londrina: Editora e Distribuidora Educacional S.A.,
2018.
 160 p.

S232l Linguagens de programação e estruturas de dados /

© 2018 por Editora e Distribuidora Educacional S.A.
Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida ou transmitida de qualquer
modo ou por qualquer outro meio, eletrônico ou mecânico, incluindo fotocópia, gravação ou qualquer outro tipo

de sistema de armazenamento e transmissão de informação, sem prévia autorização, por escrito, da Editora e
Distribuidora Educacional S.A.

Presidente
Rodrigo Galindo

Vice-Presidente Acadêmico de Graduação
Mário Ghio Júnior

Conselho Acadêmico
Alberto S. Santana

Ana Lucia Jankovic Barduchi
Camila Cardoso Rotella

Danielly Nunes Andrade Noé
Grasiele Aparecida Lourenço
Isabel Cristina Chagas Barbin
Lidiane Cristina Vivaldini Olo

Thatiane Cristina dos Santos de Carvalho Ribeiro

Revisora Técnica
Márcio Aparecido Artero

Editorial
Adilson Braga Fontes

André Augusto de Andrade Ramos
Leticia Bento Pieroni

Lidiane Cristina Vivaldini Olo

2018
Editora e Distribuidora Educacional S.A.

Avenida Paris, 675 – Parque Residencial João Piza
CEP: 86041-100 — Londrina — PR

e-mail: editora.educacional@kroton.com.br
Homepage: http://www.kroton.com.br/

Unidade 3 | Estrutura de dados ___

Seção 1 - Alocação dinâmica de memória ____________________________

Seção 2 - Listas e seus casos específicos (pilha e fila) ____________________

Seção 3 - Algoritmos de pesquisa ___________________________________

Seção 4 - Classificação __

Unidade 1 | Algoritmos e seus tipos de representação e estrutura de dados

Seção 1 - Tipos abstratos de dados e funções
1.1 | Introdução à Estrutura de Dados
1.2 | Estrutura de Dados no Dia a dia
1.3 | Funções
1.3.1 | Funcionamento
1.3.2 | Sintaxe
1.3.3 | Chamando as Funções
1.3.4 | Protótipos de Funções
1.3.5 | Comando Return
1.3.6 | Variáveis locais e globais
1.3.7 | Parâmetros das funções
1.3.8 | Passagem por Valor
1.3.9 | Passagem por Referência

Seção 2 - Técnicas de programação para a implementação de estruturas
de dados
2.1 | Ponteiros
2.1.1 | Operador de endereço (&)
2.1.2 | Declaração de Ponteiros
2.1.3 | Inicialização de Ponteiros
2.1.4 | Impressão de Ponteiros
2.2 | Alocação dinâmica de memória
2.3 | Registros
2.3.1 | Declaração de um Registro
2.3.2 | Comando Typedef
2.3.3 | Registros e Ponteiros
2.4 | Recursividade

Sumário

7

10
10
12
16
16
16
17
18
20
20
21
22
23

26
26
27
27
27
29
30
30
31
33
33
34

Unidade 2 | Tipos e estruturas de dados

Seção 1 - Vetores
1.1 | Sintaxe para declaração de Vetores
1.2 | Sintaxe para acessar elementos do vetor
1.3 | Sintaxe com laços para percorrer o vetor

Seção 2 - Matrizes
2.1 | Sintaxe para declaração de matrizes
2.2 | Sintaxe para manipulação de matrizes

Seção 3 - Tipos de Dados
3.1 | Tipos de Dados Abstratos
3.2 | Tipos Compostos de Dados
3.3 | Tipos de dados Heterogêneos

43

47
47
49
50

55
55
55

58
58
59
63

71

74

79

92

101

Unidade 4 | Árvores e grafos ___

Seção 1 - Tipos abstratos de dados e funções ___________________________
4.1 | Grafos __
4.1.1 | Notação Formal ___
4.1.2 | Arcos ___
4.1.3 | Tipos de Grafos ___
4.1.4 | Grau de um Vértice ___
4.1.5 | Ciclo __
4.1.6 | Componentes Conectados __
4.1.7 | Pontos de Articulação ___
4.1.8 | Caminho e Comprimento ___
4.2 | Árvores __
4.3 | Árvore Binária __
4.3.1 | Árvore Estritamente Binária __
4.3.2. | Árvore Binária Cheia ___
4.3.3 | rvore Binária Balanceada (AVL) __
4.3.4 | Árvore Binária Completa __

Seção 2 - Árvore binária de busca ___________________________________
4.4 | Árvore Binária de Busca __
4.5 | Implementação Estática de uma Árvore Binária de Busca ____________________
4.5.1 | Definição de um nó ___
4.5.2 | Inicialização ___
4.5.2 | Inserção de Nós __
4.5.3 | Implementação Dinâmica de uma Árvore Binária de Busca ________________
4.5.3.1 | Criação de uma Árvore __
4.5.3.2 | Inserção de Nós __
4.5.3.3 | Verificação de uma Árvore Vazia ___
4.5.3.4 | Liberação de Memória ___
4.5.3.6 | Exclusão de Nós __
4.6 | Percursos __
4.6.1 | Percurso Pré-Ordem (R, E, D) __
4.6.2 | Percurso In-Ordem (E, R, D) ___
4.6.3 | Percurso Pós-Ordem (E, D, R) __
4.6.4 | Percurso em Nível ___

111

114
114
116
116
117
118
119
119
120
121
122
125
126
126
127
127

129
129
130
131
131
132
137
138
138
139
140
141
143
144
144
145
146

Apresentação
Olá, aluno, seja bem-vindo!

A estrutura de dados é muito utilizada em diversas áreas para a
resolução de problemas computacionais. A maneira de organização
dos dados afeta diretamente a eficiência de um algoritmo. Dessa
forma, dados que possuem melhor organização tendem a prover
maior eficiência e rapidez aos algoritmos que manipulam esses dados.
Para o entendimento das estruturas é necessário que você se lembre,
principalmente, do conceito de algoritmos, assim como conheça os
tipos de dados mais utilizados para a implementação de programas.
Neste livro, a Linguagem C é adotada para a implementação das
estruturas de dados por possuir alta flexibilidade e portabilidade.

Na Unidade 1, você será levado a entender a importância da estrutura
de dados, assim como os principais tipos de estruturas utilizadas para
a organização dessas informações; a aprender o que são funções,
compreendendo a diferença entre passagem por valor e passagem por
referência; a estudar sobre ponteiros, que são amplamente utilizados
para a alocação dinâmica de memória, assim como compreender a
utilização de registros para o armazenamento de informações que
possuem dados de tipos diferentes. Para concluir esta unidade, você
aprenderá o conceito de recursividade, que é utilizada principalmente
para a resolução de problemas matemáticos mais complexos.

A Unidade 2 apresenta os tipos de dados pertinentes ao
desenvolvimento de sistemas computacionais, assim como suas
características, para que você possa tomar boas decisões quanto
à escolha e definição da estrutura de dados a ser utilizada em seus
projetos. Você irá aprender sobre os tipos de dados que podem ser
implementados na linguagem C, incluindo comandos, funções e
a sintaxe dessas implementações. Ao conhecer os tipos de dados
abstratos e compostos, homogêneos e heterogêneos, você será capaz
de criar estruturas adequadas para os seus programas.

O foco da Unidade 3 são as listas lineares e seus tipos principais:
pilha e fila. Você irá entender a lógica utilizada para a implementação
dessas estruturas de dados, utilizando técnicas de programação, como
ponteiros e alocação dinâmica de memória, para sua implementação.
Você também irá conhecer os principais tipos de algoritmos para a

pesquisa em estrutura de dados, bem como conceitos relacionados à
classificação ou ordenação de elementos em uma estrutura.

Na Unidade 4 você aprenderá sobre dois tipos de estruturas de
dados muito utilizados na área da computação: grafos e árvores. O foco
está concentrado nas árvores binárias de busca. Dessa maneira, você
irá conhecer as maneiras para a implementação desse tipo de árvore,
assim como exemplos, simulações envolvendo as operações mais
importantes e trechos de código na Linguagem C que implementam
essas operações. Para finalizar, será definido o conceito de percurso
ou travessia de uma árvore binária de busca, apresentando e ilustrando
quatro tipos de percursos.

Além de todos os conceitos e exemplos apresentados neste livro,
o material de estudos ainda contribuirá para que você possa treinar
os conhecimentos adquiridos por meio da realização de exercícios
orientados, Desejamos a você bons estudos e dedicação para a
conclusão desta etapa.

Unidade 1

Algoritmos e seus tipos de
representação e estrutura de
dados

Nesta unidade, você será levado(a) a entender a importância da
estrutura de dados, assim como os principais tipos de estruturas
utilizadas para a sua organização. Dentre os principais objetivos desta
unidade, estão:

•	� Aprender o que são funções – conceito praticamente
indispensável para a implementação de estruturas de
dados – por meio da diferença entre passagem por valor e
passagem por referência;

•	� Estudar sobre ponteiros, que são amplamente utilizados
para a alocação dinâmica de memória;

•	� Compreender a utilização de registros para o
armazenamento de informações que possuem dados de
diferentes tipos;

•	� Aprender o conceito de recursividade, que é utilizada
principalmente para a resolução de problemas matemáticos
mais complexos.

Objetivos de aprendizagem

Nesta seção você estudará os principais conceitos relacionados às Estruturas

de Dados, conhecendo seus tipos mais importantes e associando-os a situações

do seu cotidiano; entenderá o conceito de funções por meio de sua sintaxe, seus

comandos básicos, as diferenças entre os tipos de passagem, de parâmetros, além

de vários exemplos na Linguagem C de aplicação de funções.

Seção 1 | Tipos abstratos de dados e funções

Gisele Alves Santana

Nesta seção, você vai aprender sobre ponteiros, que possuem como conteúdo

o endereço de memória de outra variável; ser apresentado(a) à alocação dinâmica

de memória por meio de demonstrações de funções para a alocação e liberação

de memória de um computador; estudar os registros, que possuem a capacidade

de armazenar coleções de dados de diferentes tipos e, por fim, aprender sobre a

recursividade, destacada como uma ferramenta de programação muito poderosa

na resolução de problemas computacionais complexos.

Seção 2 | �Técnicas de programação para a implementação de estruturas de
dados

Introdução à unidade
Nesta unidade, serão apresentados os conceitos básicos sobre

Estrutura de Dados que, basicamente, definem os mecanismos para
a sua organização, assim como os métodos de acesso aos dados
processados por um programa.

Essa estrutura é muito utilizada em diversas áreas para a resolução
de problemas computacionais. A maneira de organização dos dados
afeta diretamente a eficiência de um algoritmo e, dessa forma, dados
que possuem melhor organização tendem a prover maior eficiência e
rapidez aos algoritmos que manipulam esses dados.

Para o entendimento das estruturas de dados, é necessário que
você se lembre, principalmente, do conceito de algoritmos, assim
como conheça os tipos de dados mais utilizados para a implementação
de programas, e, nesta unidade, a Linguagem C, por possuir alta
flexibilidade e portabilidade, será adotada para essa implementação.

Existem vários tipos de estruturas de dados e, dependendo do
problema, uma determinada estrutura é mais adequada para a sua
resolução do que outra; logo, ao final do estudo, espera-se que você
conheça as características de alguns tipos e consiga identificar os mais
adequados para a resolução de problemas específicos.

Para a implementação da maioria de tais estruturas são utilizadas
funções para a manipulação de seus dados. Assim, esta unidade traz
os conceitos mais importantes relacionados às funções, bem como
vários exemplos em linguagem C. Algumas técnicas de programação
essenciais para a implementação de estrutura de dados também são
apresentadas, como a alocação dinâmica de memória, ponteiros e
registros.

Para finalizar, esta unidade apresenta o conceito de recursividade,
uma prática muito utilizada para a resolução de problemas
computacionais complexos que, para ser melhor compreendida, seu
conceito será exemplificado por meio de uma função matemática.

U1 - Algoritmos e seus tipos de representação e estrutura de dados10

Seção 1

Tipos abstratos de dados e funções
Introdução à seção

Esta seção apresentará e ilustrará os principais conceitos
relacionados às Estruturas de Dados, seus tipos mais importantes e,
por fim, associará cada um deles com situações do seu cotidiano; ela
também apresentará o conceito de funções por meio de sua sintaxe,
seus comandos básicos, a diferença entre os tipos de passagem de
parâmetros e vários exemplos na Linguagem C de aplicação de
funções.

1.1 Introdução à estrutura de dados

Em programação, os tipos de dados definem o conjunto de valores
que uma variável pode assumir ou as operações que podem ser
realizadas sobre ela. Por exemplo, uma variável booleana (tipo lógico)
pode assumir dois valores específicos: verdadeiro ou falso.

Ao declarar uma variável, automaticamente é reservada uma
quantidade específica de bytes na memória para o armazenamento dos
valores dessa variável. Assim, pode-se dizer que os tipos de dados são
métodos para interpretar o conteúdo da memória de um computador.

Existem dois tipos de alocação de memória:

•	� Alocação estática: quando é alocado um espaço fixo e
contíguo na memória para a variável;

•	� Alocação dinâmica: quando é alocado um espaço variável,
que é criado segundo a necessidade do programa.

Um item especificado em termos das operações que pode ser
realizado sobre ele é chamado de Tipo Abstrato de Dados (TAD).
Vamos supor que precisamos projetar um item para realizar algumas
tarefas; para isso, devemos especificar esse item de acordo com as
operações realizadas, ao invés de sua estrutura interna.

Para entender melhor esse conceito, considere os passos para
o projeto de um automóvel. Inicialmente, sabemos que todos os
automóveis possuem características similares, como: pneus, volante,
câmbio, motor etc., e ao ser analisado por esse aspecto, pode ser

U1 - Algoritmos e seus tipos de representação e estrutura de dados 11

considerado um tipo abstrato de dados, porém, para a construção do
automóvel com as características especificadas é necessário decidir
quais estruturas serão utilizadas para que esse trabalho tenha sucesso.
Automóveis diferentes possuem estruturas diferentes, como: tipo de
câmbio, tipo de motor, tipo de material etc., e através dessas estruturas
pode-se construir o automóvel especificado; no entanto, ao extrairmos
os detalhes da construção, todos os automóveis possuem as mesmas
características. Logo, pode-se dizer que um tipo de dado representa
uma descrição lógica, enquanto uma estrutura de dados representa
uma descrição concreta.

O TAD (Tipo Abstrato de Dados) é o nível lógico e a estrutura de
dados é o nível de implementação. Assim, a Estrutura de Dados é um
método particular de se implementar um TAD.

Uma estrutura é construída dos tipos primitivos (inteiro, real, char
etc.) ou dos tipos compostos (array, registro, etc.) de uma linguagem
de programação.

Como exemplos de estrutura de dados, pode-se citar:

•	 Vetores (arrays).

•	 Registros (structs).

•	 Listas Ordenadas.

•	 Pilhas.

•	 Filas.

•	 Deques.

•	 Árvores.

•	 Grafos.

Essas estruturas de dados permitem que diversas operações sejam
realizadas. Entre as mais utilizadas, destacam-se:

•	 Criação (declaração).

•	 Percurso.

•	 Busca.

•	 Inserção.

•	 Alteração.

•	 Exclusão.

Independentemente do tipo de dado com o qual se deseja trabalhar,
primeiramente é realizada a operação de criação; em seguida, pode-

U1 - Algoritmos e seus tipos de representação e estrutura de dados12

se realizar inclusões, alterações ou remoções de dados. Outro tipo de
operação que pode ser realizada é o percurso, que faz a varredura de
todos os elementos armazenados em uma estrutura de dados.

1.2 Estrutura de Dados no Dia a dia

Quando se realiza um cadastro de clientes, quais são os dados
mais importantes que devem ser considerados, por exemplo: a idade
ou a cor dos cabelos? Bem, isso vai depender muito dos requisitos
levantados na elaboração do projeto do sistema. Além disso, deve-se
considerar as operações que serão necessárias para a manipulação
dos dados, por exemplo: como encontrar um cliente ou inserir um
novo cliente?

Como foi visto, a estrutura de dados é utilizada, principalmente, para
a organização das informações, proporcionando rapidez no momento
da recuperação de algum item; no entanto, como as estruturas de
dados podem ser aplicadas no dia a dia?

Imagine a organização de uma empresa que possui um presidente,
um diretor administrativo (com as seções de recursos humanos),
um diretor de vendas e um diretor financeiro (com as seções de
contabilidade e tesouraria). Geralmente, essa hierarquia é representada
graficamente por um organograma, que pode ser associado à estrutura
de uma árvore, conforme observado na Figura 1.1.

Fonte: elaborada pela autora.

Figura 1.1 | Modelo de árvore

Outro tipo de associação das estruturas de dados com eventos do
cotidiano pode ser feita em relação às caixas de pizzas, que geralmente
são empilhadas pelo entregador, conforme Figura 1.2. Essa estrutura
pode ser associada a uma pilha.

U1 - Algoritmos e seus tipos de representação e estrutura de dados 13

Fonte: elaborada pela autora.

Figura 1.2 | Modelo de pilha

Você já notou a posição na qual as pessoas esperam sua vez por
atendimento em um banco? Elas geralmente formam uma fila, por
ordem de chegada, conforme Figura 1.3. Assim como a fila da vida real,
na estrutura de dados a fila também tem as mesmas características.

Fonte: <https://imgs.jusbr.com/publications/noticias/images/625121495215303.jpg>. Acesso em: 12 ago. 2017.

Figura 1.3 | Modelo de fila

O grafo é outro tipo de estrutura de dados que pode ser associado
com situações cotidianas. Os possíveis trajetos de um carteiro podem
ser representados através desse tipo de estrutura de dados, conforme
observado na Figura 1.4. Geralmente, os grafos possuem um peso
associado a cada aresta, que também pode ser entendido como o
custo gasto para o percurso de um vértice a outro.

U1 - Algoritmos e seus tipos de representação e estrutura de dados14

Fonte: <http://4.bp.blogspot.com/-j9h8d0dzM2I/UbSAXvd3nII/AAAAAAAAACM/0wqWPDB1_Ys/s1600/Desenho1.png>.
Acesso em: 12 ago. 2017.

Figura 1.4 | Modelo de grafo

Questão para reflexão

Você conhece o sistema de diretórios utilizado pelo sistema operacional
Windows? Qual o tipo de estrutura de dados que você acha que é
empregado para a organização dos dados (pastas e arquivos) do seu
computador?

De acordo com Mizrahi (2006), existem dois tipos de estruturas
de dados: lineares e não lineares. Nas estruturas lineares, o primeiro e
o último elemento são bem definidos e os elementos intermediários
possuem um antecessor e um sucessor. Exemplos de estruturas
lineares: filas, pilhas, vetores etc. Já nas estruturas não lineares existe
uma relação hierárquica ou qualquer outro tipo de relação entre os
elementos, e o mais importante é saber identificar a melhor estrutura
para a resolução de cada tipo de problema.

Segundo Tenenbaum, Langsam e Augenstein (2004), a manipulação
dos dados em uma estrutura pode ser feita de forma sequencial ou
encadeada. Na forma sequencial, o espaço de memória é pré-alocado
no momento em que a estrutura é definida, tendo, assim, um tamanho
fixo; já na forma encadeada, o tamanho alocado é inicialmente

U1 - Algoritmos e seus tipos de representação e estrutura de dados 15

desconhecido, sendo o espaço reservado conforme a necessidade e
em tempo de execução.

Neste livro, nós veremos primeiramente as estruturas de dados que
são manipuladas de forma sequencial, como os vetores, por exemplo;
mas, antes de iniciarmos esse estudo é fundamental saber como
manipular as informações de uma estrutura de dados.

Imagine uma lista de notas e as operações que se pode realizar com
ela. Essa lista inicialmente está vazia, mas algumas notas serão inseridas,
depois removidas, alteradas, e até mesmo uma operação de busca por
uma determinada nota poderá ser realizada. Toda vez que se desejar
inserir uma nova nota na lista, um mesmo conjunto de instruções será
executado. Nesse caso, as boas práticas de programação sugerem
que se crie uma função chamada “inserir”, por exemplo, e sempre
que precisarmos inserir uma nota, basta solicitar que o computador
execute a função “inserir”.

Em programação, todas essas operações para a manipulação de
uma estrutura de dados são implementadas por meio de funções, e
a linguagem de programação mais utilizada para isso é a linguagem
C, uma vez que possui alta flexibilidade e portabilidade. Assim, nesta
unidade, estudaremos algumas técnicas importantes dessa linguagem
para a implementação das estruturas de dados.

Para saber mais

O C é uma linguagem de propósito geral, sendo adequada à
programação estruturada. No entanto, é mais utilizada para escrever
compiladores, analisadores léxicos, bancos de dados, editores de
texto etc. A linguagem C pertence a uma família de linguagens cujas
características são: portabilidade, modularidade, compilação separada,
recursos de baixo nível, geração de código eficiente, confiabilidade,
regularidade, simplicidade e facilidade de uso. Nos links a seguir, você
tem acesso a apostilas com vários conceitos dessa linguagem de
programação:

Disponível em: <ftp://ftp.unicamp.br/pub/apoio/treinamentos/linguagens/c.
pdf>. Acesso em: 12 ago. 2017.

Disponível em: http://www2.dcc.ufmg.br/disciplinas/pc/source/introducao_c_
renatocm_deeufmg.pdf> . Acesso em: 12 ago. 2017.

U1 - Algoritmos e seus tipos de representação e estrutura de dados16

1.3 Funções

"Uma função é um conjunto de instruções desenhadas para cumprir
uma tarefa particular, agrupadas numa unidade com um nome para
referenciá-la" (MIZRAHI, 2006, p. 117). As funções são usadas para
criar pequenos pedaços de códigos separados do programa principal
e servem para agrupar um conjunto de instruções de acordo com
a tarefa que elas desempenham. A principal finalidade das funções
é impedir que o programador tenha que escrever o mesmo código
repetidas vezes. Para exemplificar o conceito de função, imagine um
sistema de controle de estoques; nesse sistema, algumas operações
como inclusão ou exclusão de produtos são executadas com certa
frequência. Dessa maneira, essas operações podem ser implementadas
em forma de funções e todas as vezes que houver a necessidade de
cadastrar um novo produto, por exemplo, a função de “inclusão” é
chamada.

1.3.1 Funcionamento

As funções agrupam um conjunto de comandos e associam a ele
um nome, e o uso desse nome é uma chamada da função. Após sua
execução, o programa volta ao ponto do programa principal situado
imediatamente após a chamada, e a essa volta damos nome de retorno.

1.3.2 Sintaxe

"A sintaxe pode ser definida pelo conjunto de regras que definem as
sequências corretas dos elementos de uma linguagem de programação"
(MIZRAHI, 2006, p. 117). A sintaxe de uma função é muito semelhante
a de uma função main(). A única diferença é que a main() possui um
nome especial, pois essa função é a primeira a ser chamada quando o
programa é executado.

Os programas em linguagem C podem ser executados em diversos
compiladores gratuitos, incluindo o Code Blocks (disponível para
download em: http://www.codeblocks.org/) ou Dev C++ (disponível
para download em: http://www.bloodshed.net/devcpp.html).

A seguir, tem-se um exemplo da estrutura de uma função:

U1 - Algoritmos e seus tipos de representação e estrutura de dados 17

Como se percebe, os elementos básicos de uma função são:
tipo, nome e parâmetros. O “tipo” define o tipo de dado que a função
retornará como o resultado de sua execução; o “nome” indica qual
é o nome da função, já os parâmetros são utilizados para transmitir
informações para a função.

1.3.3 Chamando as Funções

Uma chamada a uma função é feita escrevendo-se o nome dela
seguido dos parâmetros fornecidos (entre parênteses). Se não houver
parâmetros, ainda assim, devem ser mantidos os parênteses, para que
o compilador diferencie a chamada de uma função e a de uma variável.
Além do mais, o comando de chamada da função deve ser seguido de
ponto e vírgula, e as funções apenas podem ser chamadas depois de
terem sido declaradas.

Para chamar à função “potencia”, por exemplo, deve-se escrever a
seguinte linha de instrução: potencia ();

No próximo exemplo, tem-se o código de um programa que
possui uma função chamada “mensagem”. Essa função vem antes
do programa principal e é chamada (invocada) dentro do mesmo. A
função “mensagem” é do tipo void, ou seja, não retorna nenhum valor
ao programa principal. Ao compilar esse código, a saída do programa
será a frase: “Olá, eu sou uma função”.

É possível notar, no exemplo a seguir, outro programa que possui
uma função chamada “potencia”, que calcula o quadrado de um
determinado valor. Essa função é invocada no programa principal
através do comando “potencia ();”. A partir desse momento, a execução
do programa principal para, e a função é iniciada, criando duas variáveis

U1 - Algoritmos e seus tipos de representação e estrutura de dados18

do tipo inteiro. Em seguida, é solicitado que o usuário digite um valor,
que será multiplicado por ele mesmo e o resultado será atribuído à
variável “pot”, que é escrita na tela. Ao final da execução de todos
os comandos da função, a execução do programa retornará à linha
posterior, à chamada da função no programa principal.

Geralmente, a maioria dos programas possui várias funções, cada
uma executando uma tarefa específica.

Para saber mais

A Linguagem C possui uma biblioteca chamada: <math.h>. Nessa
biblioteca, estão disponíveis várias funções matemáticas, como:
potência, raiz quadrada etc.

Confira mais informações no link a seguir: <http://linguagemc.com.
br/a-biblioteca-math-h/>. Acesso em: 12 ago. 2017.

1.3.4 Protótipos de Funções

Até o conteúdo estudado, todas as funções ficaram localizadas
logo no início do programa e após as inclusões das bibliotecas, pois
não se pode utilizar uma função sem antes declará-la. Porém, existe
uma forma de se escrever uma função depois do programa principal e

U1 - Algoritmos e seus tipos de representação e estrutura de dados 19

isso é possível com a utilização de protótipos de funções.

"Os protótipos podem ser considerados como declarações de
funções" (MIZRAHI, 2006, p. 120). O protótipo é colocado no início
do programa (após a inclusão das bibliotecas), estabelecendo o tipo,
nome e a lista de parâmetros da função.

Suponha que o programa contenha uma função chamada
“potencia”. A sintaxe do protótipo dessa função será:

int potencia (int a);

Repare que é igual ao cabeçalho da definição da função; porém, ao
invés do { (abre chaves) tem-se o; (ponto e vírgula).

A seguir, será apresentado um programa completo que utiliza o
recurso de protótipos de funções.

Para saber mais

No link a seguir você encontra a definição e utilidade do comando
system(“PAUSE”), que é basicamente usado para interromper a
execução de um programa.

Disponível em: <http://www.ime.usp.br/~elo/IntroducaoComputacao/
Esqueleto%20de%20um%20programa%20em%20C.htm>. Acesso em:

U1 - Algoritmos e seus tipos de representação e estrutura de dados20

12 ago. 2017.

Já o comando return 0 pode ser utilizado quando a função não retorna
nenhum valor. No link a seguir, você encontra mais explicações sobre
esse comando:

Disponível em: <http://linguagemc.com.br/funcoes-em-c/>. Acesso
em: 12 ago. 2017.

1.3.5 Comando Return

"O comando return termina a execução de uma função e retorna
o controle para a instrução seguinte do código da chamada da
função" (MIZRAHI, 2006, p. 123). Quando uma função não tem um
tipo de retorno definido, o compilador considera que o tipo de retorno
adotado é void.

Existem três sintaxes possíveis associadas ao comando return:

•	 return;

•	 return expressão;

•	 return (expressão).

Para ilustrar a utilização do comando return foi desenvolvida uma
função chamada “Potencia”, que recebe como parâmetro o valor da
variável “x” do programa principal e retorna o quadrado desse valor.

Uma questão importante em relação a esse comando é o fato do
mesmo poder retornar apenas UM valor. Se o programa necessita que
mais valores sejam modificados por uma função, outra maneira de
passagem dos parâmetros se faz necessária. Nós estudaremos sobre
esse assunto mais adiante nesta seção.

1.3.6 Variáveis locais e globais

Segundo Mizrahi (2006), um conceito muito importante em
funções é o de variáveis locais. A declaração das variáveis da função

U1 - Algoritmos e seus tipos de representação e estrutura de dados 21

deve vir no início da função, antes de qualquer outro comando. Uma
variável declarada dentro de uma função é “local”, ou seja, só existe
dentro da função. Ao ser iniciada a função, a variável é criada, e quando
a função termina, a variável é apagada.

O escopo de uma variável é definido pelas regiões onde a variável
pode ser utilizada. Por exemplo, as variáveis declaradas no início da
função principal podem ser utilizadas em qualquer lugar dentro da
função principal, porém, apenas DENTRO dela, ou seja, NÃO podem
ser utilizadas em outra função.

Variáveis declaradas no mesmo escopo (mesma função) precisam
ter nomes diferentes, mas nomes podem ser "reaproveitados" em
outros escopos (outras funções).

1.3.7 Parâmetros das funções

"Os parâmetros de uma função são utilizados para transmitir
informações para a função", (MIZRAHI, 2006, p. 125). Uma função pode
receber qualquer número de argumentos, sendo possível escrever
uma função que não receba nenhum argumento. No caso de uma
função sem argumentos pode-se escrevê-la de duas maneiras:

•	 Deixando a lista de argumentos vazia (mantendo os parênteses);

•	 Colocando o tipo void entre os parênteses.

Os parâmetros são inseridos entre os parênteses após o nome da
função e separados por vírgulas. A seguir, será apresentado o exemplo
de uma função que calcula a área de um retângulo, dados os valores
da base e da altura. Repare que no programa principal é declarada uma
variável chamada “ret”, que recebe o valor retornado pela função “área”.

U1 - Algoritmos e seus tipos de representação e estrutura de dados22

Se mais de um parâmetro for necessário, ou seja, passar mais de
um valor para uma função, esses podem ser colocados na lista de
parâmetros separados por vírgulas. Pode-se passar quantos parâmetros
desejar. Existem duas formas utilizadas para passagem de parâmetros:
passagem por valor e passagem por referência.

1.3.8 Passagem por Valor

"A passagem por valor é a forma mais comum utilizada para
passagem de parâmetros" (MIZRAHI, 2006, p. 126). Por exemplo,
considere funções trigonométricas, como seno, cosseno etc. A função
seno recebe o valor de um ângulo (um número real) e devolve o seno
desse ângulo. Vejamos:

float seno (float angulo);

Quando as variáveis são passadas por valor, a função cria novas
variáveis do mesmo tipo e copia nelas os valores dos parâmetros
(variáveis) passados. Assim, as funções não têm acesso às variáveis
da função principal (int main), não podendo modificar os valores das
mesmas.

U1 - Algoritmos e seus tipos de representação e estrutura de dados 23

1.3.9 Passagem por Referência

Até agora foi visto que as funções podem retornar apenas um único
valor. Porém, algumas vezes, é necessário retornar mais de um, e
quando isso acontece, utiliza-se a passagem por referência. A principal
vantagem nesse tipo de passagem é que a função pode acessar as
variáveis da função principal.

Para tanto, utiliza-se um operador chamado de operador unário de
referência, que é simbolizado por “&”. Esse operador cria outro nome
para uma variável já criada. Considere as instruções:

int n;

int & n1 = n;

Analisando as instruções, são declaradas duas variáveis, “n” e “n1”.
O operador &n1 = n indica que agora “n1” é outro nome para “n”. Ou
seja, todas as operações em qualquer das duas variáveis têm o mesmo
resultado. O operador “&” faz referência ao endereço de memória de
uma variável; no entanto, uma referência não é uma cópia da variável a
quem se refere, mas sim, a mesma variável sob diferentes nomes.

Analisemos agora o exemplo de uma função que tem o objetivo
de alterar o valor de duas variáveis, conforme programa apresentado
a seguir.

U1 - Algoritmos e seus tipos de representação e estrutura de dados24

Compilando o programa, nota-se que os valores das variáveis “a”
e “b” não foram alterados no programa principal. Quando a função
“altera” é chamada e inicializada, os valores são trocados (x = a e y =
b), entretanto, quando a função termina, as variáveis da função (x e y)
são destruídas.

Como fazer para que a função “altera” mude realmente os valores
das variáveis “a” e “b”?

Nesse caso, utiliza-se o operador unário “&” antes do nome das
variáveis que são passadas por parâmetro, conforme o cabeçalho da
função:

int altera (int& x, int& y) {

A seguir será apresentado um programa que realmente faz a
modificação dos valores das variáveis no programa principal.

O operador unário retorna o endereço de memória da variável e,
com esse tipo de passagem, não se tem mais cópias das variáveis, mas
sim, o acesso direto às variáveis da função principal. Então, alterados
os valores das variáveis na função, altera-se também os seus valores
no programa principal, pois nesse caso, estaremos lidando com as

U1 - Algoritmos e seus tipos de representação e estrutura de dados 25

mesmas variáveis.

E, então, conhecidos os conceitos mais importantes relacionados à
utilização de funções, agora é o momento de aprendermos sobre um
conceito muito utilizado para a manipulação de estruturas de dados:
os ponteiros.

Finalizando a seção

Nesta seção, você aprendeu sobre os principais conceitos
relacionados às Estruturas de Dados, assim como conheceu seus
tipos mais importantes; foi apresentado(a) ao conceito de funções,
à sua sintaxe, aos seus comandos básicos, à diferença entre os tipos
de passagem de parâmetros e a vários exemplos na Linguagem C de
aplicação de funções.

Atividades de aprendizagem

1. Você já adquiriu algumas habilidades de programação no decorrer
desta seção. Dessa forma, é proposto que você utilize seus conhecimentos
prévios relacionados aos algoritmos e à Linguagem de programação C e
implemente um programa que receba do usuário (no programa principal)
duas variáveis: x, y. Através de uma função, calcule a potência do valor x (x é
a base, y é o expoente).

2. Você aprendeu, nesta seção, a diferença entre a passagem por valor e
passagem por referência para a implementação de funções. Considerando
o que foi estudado, faça um programa em C que contenha uma função
que receba dois valores inteiros por parâmetro e retorne-os ordenados em
ordem crescente.

U1 - Algoritmos e seus tipos de representação e estrutura de dados26

Seção 2

Técnicas de programação para a implementação
de estruturas de dados
Introdução à seção

Nesta seção, você irá aprender que os ponteiros possuem como
conteúdo o endereço de memória de outra variável; será apresentado(a)
à alocação dinâmica de memória, através de demonstrações de
funções para a alocação e liberação de memória de um computador;
aprenderá que os registros possuem a capacidade de armazenar
coleções de dados de diferentes tipos e, por fim, obterá explicações
a respeito da recursividade, destacando-se como uma ferramenta
de programação muito poderosa e empregada para a resolução de
problemas computacionais complexos, podendo ser usada sempre
que for possível expressar a solução de um problema em função do
próprio problema.

2.1 Ponteiros

"Ponteiros são variáveis cujo conteúdo é um endereço de memória"
(MIZRAHI, 2006, p. 144). Assim, como um ponteiro endereça uma
posição de memória que contém valores e um determinado endereço,
diz-se que ele aponta para esse endereço de memória. Logo, como o
valor do ponteiro é o endereço de outra variável, diz-se que ele aponta
para essa variável. Na linguagem C, as variáveis estão associadas a um
nome, um tipo, um valor e um endereço de memória. Por exemplo:

int x = 10;

char nome = “a”;

Na memória, o armazenamento dessas variáveis é ilustrado na
Figura 1.5.

U1 - Algoritmos e seus tipos de representação e estrutura de dados 27

Fonte: elaborada pelo autora.

Figura 1.5 | Armazenamento das variáveis na memória

A variável inteira “x” está armazenada no endereço “0x0100”. Ela
utiliza dois bytes de memória (quando um objeto usa mais de um byte,
seu endereço é aquele onde ele começa - nesse caso, 0x0100 e não
0x0101). A variável do tipo char está armazenada no endereço “0x0103”
e usa um byte de memória, e o compilador é responsável por controlar
os locais de armazenamento das variáveis.

2.1.1 Operador de endereço (&)

O operador de endereço (&) fornece o endereço de memória onde
está armazenada uma variável. Lê-se “o endereço de”. Esse operador
pode ser usado conforme nas expressões a seguir:

&x tem valor 0x0100

&nome tem valor 0x0103

2.1.2 Declaração de Ponteiros

Para declarar um ponteiro basta utilizar o operador *(asterisco)
antes do nome da variável. Ponteiros são tipados, ou seja, devem ter
seu tipo declarado e somente podem apontar para variáveis do mesmo
tipo. Acompanhe os exemplos a seguir:

int *pont; // define um ponteiro para inteiro chamado pont.

float *nota; // define um ponteiro para real chamado nota.

char *sexo; // define um ponteiro para caractere chamado sexo.

struct aluno *faculdade; // define um ponteiro para uma estrutura
chamado faculdade.

2.1.3 Inicialização de Ponteiros

Até agora os ponteiros foram declarados, mas ainda não foram

U1 - Algoritmos e seus tipos de representação e estrutura de dados28

inicializados, ou seja, eles apontam para um lugar indefinido na
memória, e é necessário, antes de ser utilizado, que ele seja apontado
para algum lugar conhecido, ou, em outras palavras, é preciso que ele
seja inicializado.

Como exemplo de inicialização de ponteiros, considere o seguinte
trecho de código:

int x = 5;

int *pt;

pt = &x;

No exemplo, foi criada uma variável do tipo inteiro chamada “x” e
atribuído o valor 5 para ela; bem como foi criado um ponteiro para
o inteiro “pt”. A linha de código: pt = &x significa que a expressão &x
fornece o endereço de “x”, o qual é armazenado em “pt”, que passa a
apontar para o endereço de memória da variável “x”. Na Figura 1.6, tem-
se a ilustração do funcionamento do ponteiro “pt”.

Fonte: elaborada pelo autora.

Figura 1.6 | Funcionamento de um ponteiro

Pode-se alterar o valor de “x” utilizando “pt”. Para isso, deve-se usar o
operador "inverso" do operador &, que é o operador *.

O operador * possui dois empregos distintos no uso de ponteiros:

•	� Na declaração de uma variável, indicando que ela é um
ponteiro;

•	� Na implementação do programa, sendo utilizado para a
manipulação do conteúdo ou valor de variável.

O valor de “x” pode ser alterado através do ponteiro “pt”, por
exemplo: *pt = 15; //altera o valor de “cont” para 15.

No código a seguir, tem-se o exemplo de um programa na
linguagem C que declara uma variável do tipo inteiro, assim como um
ponteiro do mesmo tipo. Esse ponteiro é inicializado, ou apontado

U1 - Algoritmos e seus tipos de representação e estrutura de dados 29

para a variável “x”. Ao compilar o programa, percebe-se que o valor do
ponteiro é o endereço de memória da variável “x”.

Questão para reflexão

Quais os principais problemas que podem ocorrer quando um ponteiro
não é inicializado?

2.1.4 Impressão de Ponteiros

Na linguagem de programação C, pode-se imprimir o valor
armazenado no ponteiro (um endereço) usando a função “printf” com
o operador “%p” na string de formato.

 A seguir será apresentado um exemplo de código com a impressão
de ponteiros.

#include < {
 int a; iostream.h>
int main()

 int *pt; //declaração do ponteiro pt
 pt = &a; // pt aponta para a
 printf("O endereço de a é: %p\n", pt);
}

Os ponteiros também são utilizados para a alocação dinâmica de
memória, muito utilizada para a implementação de estruturas de dados

U1 - Algoritmos e seus tipos de representação e estrutura de dados30

mais complexas.

2.2 Alocação dinâmica de memória

Em C, pode-se alocar dinamicamente memória durante a execução
de um programa, e tal alocação pode ser feita com a função malloc.
Já, para a liberação de memória utiliza-se a função free, e no exemplo
que se segue, pode-se observar o uso de ambas:

Estudados os conceitos mais importantes relacionados à utilização
de funções, ponteiros e alocação dinâmica de memória, agora é o
momento de aprendermos sobre os registros, muito utilizados para a
implementação de pilhas, filas ou árvores dinâmicas.

2.3 Registros

Na Unidade 2, o estudo será pautado em vetores, que são estruturas
de dados homogêneas e que, basicamente, armazenam vários valores,
porém, todos de um mesmo tipo. No entanto, o que fazer quando se
tem coleções de dados que possuem tipos diferentes, como uma ficha
de cadastro de clientes?

Uma ficha de cadastro pode possuir alguns campos, como:

Nome: string

Endereço: string

Telefone: string

U1 - Algoritmos e seus tipos de representação e estrutura de dados 31

Salário: float

Idade: int

Para resolver esse problema existem os registros, que "são conjuntos
de dados logicamente relacionados, mas que podem possuir tipos
diferentes de variáveis, como: inteiro, real, string etc." (MIZRAHI, 2006,
p.237). Um registro ou estrutura (struct) é um grupo de itens no qual cada
item possui um identificador próprio, sendo cada um deles conhecido
como um membro da estrutura. Um registro permite agrupar dados
de diferentes tipos em uma mesma estrutura (ao contrário dos vetores
que possuem elementos de um mesmo tipo).

Cada componente de um registro pode ser de um tipo diferente
(int, char etc. Esses componentes são referenciados por um nome. Em
várias linguagens de programação, uma estrutura é chamada "registro"
e um membro é chamado de "campo", conforme Figura 1.7. Um
campo é um conjunto de caracteres com o mesmo significado.

Fonte: Elaborada pelo autora (2017).

Figura 1.7 | Elementos de um registro

2.3.1 Declaração de um Registro

Geralmente, um registro ou struct é declarado após a inclusão
das bibliotecas e antes do programa principal. A sintaxe básica da
declaração de um registro é mostrada a seguir:

U1 - Algoritmos e seus tipos de representação e estrutura de dados32

No exemplo a seguir, foi criado o registro “ficha_de_aluno” que
possui três campos: nome, disciplina e media.

Depois de declarar o registro, precisa-se criar uma variável que vai
utilizá-lo. No exemplo, é criada a variável “aluno”, que é do tipo “ficha_
de_aluno”.

Para se referir a um campo de um registro, deve-se escrever o
nome do registro e o nome do campo separado por um ponto. Nos
exemplos a seguir, os campos do registro são acessados e inicializados
com valores fixos.

aluno.nome = “Gideon”;

aluno.disciplina = “Programação”;

aluno.media = 9.5;

A seguir, será apresentado um programa que faz a utilização de
registros.

U1 - Algoritmos e seus tipos de representação e estrutura de dados 33

2.3.2 Comando Typedef

Os registros podem ser tratados como um novo tipo de dados
(TENEMBAUM et al., 2004, p. 17). Para isso é utilizado o comando
typedef. Por exemplo:

typedef struct ficha_de_aluno aluno;

aluno a, b;

Depois dessa definição, pode-se passar a dizer “aluno” ao invés de
“struct ficha_de_aluno”.

2.3.3 Registros e Ponteiros

Cada registro tem um endereço de memória e pode-se imaginar
que esse endereço é o de seu primeiro campo. Comumente, é
utilizado um ponteiro para armazená-lo e, nesse caso, esse ponteiro
aponta para o registro. Por exemplo:

U1 - Algoritmos e seus tipos de representação e estrutura de dados34

aluno *pt;// pt é um ponteiro para o registro ficha_de_aluno

aluno a;

pt = &a; // agora pt aponta para a

(*pt).media = 9.3; // tem o mesmo resultado que a.media = 9.3

A expressão: pt->media é equivalente a (*pt).media = 9.3, sendo
muito mais utilizada.

2.4 Recursividade

A recursividade é uma ferramenta de programação muito
poderosa, sendo um recurso bastante empregado em linguagens
de programação para a solução de problemas computacionais
complicados ((TENENBAUM; LANGSAM; AUGENSTEIN, e está
diretamente relacionada ao conceito de função e à sua implementação.
Essa ferramenta pode ser usada sempre que for possível expressar
a solução de um problema em função do próprio problema. Para a
implementação de programas recursivos usa-se um procedimento
que permite dar um nome a um comando, o qual pode chamar a si
próprio.

Um exemplo muito utilizado para a explicação de recursividade é a
definição matemática de uma função fatorial, simbolizada pelo sinal de
exclamação (!). O fatorial de um número inteiro positivo n é definido
como o produto de todos os inteiros entre esse número n e 1. Por
exemplo, o fatorial de 6 é igual a: 6 * 5 * 4 * 3* 2 * 1 = 720. O fatorial de
0 e 1 tem valor igual a 1.

Algumas regras matemáticas:

•	 n! = 1 se n = 0

•	 n! = n * (n-1) * (n-2) * ... * 1, se n > 0

Assim, o cálculo do valor do fatorial do número 6 pode ser realizado
da seguinte forma:

Fatorial(6) = 6 * Fatorial(5)

Fatorial(5) = 5 * Fatorial(4)

Fatorial(4) = 4 * Fatorial(3)

Fatorial(3) = 3 * Fatorial(2)

Fatorial(2) = 2 * Fatorial(1)

Fatorial(1) = 1

U1 - Algoritmos e seus tipos de representação e estrutura de dados 35

Note que o fatorial do número 6 foi obtido através do cálculo do
fatorial do número 5, que foi obtido através do cálculo do fatorial de 4,
e assim por diante.

Para evitar qualquer abreviatura e um conjunto infinito de definições,
pode-se apresentar um algoritmo que aceite um inteiro n e retorne o
valor de seu fatorial (TENEMBAUM et al., 2004, p. 133).

O trecho de programa a seguir é chamado iterativo, pois requer a
repetição explícita de um processo até que determinada condição seja
satisfeita.

Nota-se que o método interativo é mais simples e rápido. A
recursividade pode ser usada para a resolução do problema do
cálculo do fatorial de um número, assim como pode ser empregada
para a resolução de outros problemas, principalmente problemas
matemáticos.

Para saber mais

Muitos problemas têm a seguinte propriedade: cada instância do
problema contém uma instância menor do mesmo problema. Dizemos
que esses problemas têm estrutura recursiva, e no link a seguir você
pode acessar a um ótimo conteúdo sobre recursividade.

U1 - Algoritmos e seus tipos de representação e estrutura de dados36

Disponível em: <http://www.ime.usp.br/~pf/algoritmos/aulas/recu.
html>. Acesso em: 12 ago. 2017.

E, assim como no link anterior, o vídeo a seguir explica detalhadamente
o assunto; exibe vários exemplos, faz a comparação de uma função não
recursiva com uma função recursiva e demonstra o comportamento da
função recursiva utilizando a pilha de execução.

Disponível em: <https://www.youtube.com/watch?v=Vg4NhWTCWsI>.
Acesso em: 12 ago. 2017.

Nesta seção, você aprendeu sobre ponteiros, que possuem como
conteúdo o endereço de memória de outra variável; foi apresentado(a)
à alocação dinâmica de memória, através de demonstrações de
funções para a alocação e liberação de memória de um computador.
Você também aprendeu sobre os registros, que possuem a capacidade
de armazenar coleções de dados de diferentes tipos e, também, sobre
o conceito de recursividade como uma ferramenta de programação
muito poderosa e empregada para a resolução de problemas
computacionais complexos.

Atividades de aprendizagem

1. Considerando os conceitos sobre ponteiros e operadores unários, analise
o trecho de código a seguir:
int a;
a = 10;
int& b = a;
printf(“\n%d”, a);
printf(“\n%d”, b);
printf(“\n%d”, &a);
printf(“\n%d”, &b);
Qual será a sequência de valores que serão impressos na tela?
Obs.: Considere que o endereço de memória da variável "a" é AE14Z.
a) 10, 10, AE14Z, AE14Z.
b) AE14Z, AE14Z, 10, 10.
c) 10, AE14Z, 10, AE14Z.
d) AE14Z, 10, AE14Z, AE14Z.
e) 10, 10, 10, 10.

U1 - Algoritmos e seus tipos de representação e estrutura de dados 37

2. Os registros são utilizados quando há a necessidade de armazenamento
de informações que possuem dados de diferentes tipos. Implemente um
programa C que utilize um registro para armazenar as seguintes informações
de um livro: código e quantidade de páginas. Você pode inicializar os
campos desse registro no programa principal. Para exibir os seus dados, crie
uma função chamada “exibir”.

Fique ligado

Nesta unidade, você começou seu estudo aprendendo sobre os
principais conceitos relacionados às Estruturas de Dados por meio
de analogias com o seu cotidiano; em seguida, foi apresentado(a) à
definição de funções e soube como elas podem ajudar para que o
código de um programa fique mais compreensível e organizado. Você
aprendeu que uma função pode retornar apenas um valor e que se
houver a necessidade de que os valores das variáveis sejam alterados
no programa principal, deve passar esses valores por referência;
soube o que são ponteiros e como eles são fundamentais para a
implementação de estruturas de dados dinâmicas, já que armazenam o
endereço de memória de outras variáveis, e, por fim, soube o conceito
e a importância de recursividade e como essa ferramenta pode ser útil
para se implementar funções complexas e que exigem maior carga
computacional.

Para concluir o estudo da unidade

Na Computação, a Estrutura de Dados é utilizada para resolver a
maioria dos problemas complexos relacionados à programação, e é
de extrema importância conhecer e saber implementar as estruturas
básicas para armazenamento de dados a fim de uma maior eficiência
e rapidez na execução dos programas.

Saber qual o tipo de estrutura de dados que deve ser implementado
para a resolução de um problema específico é de extrema importância,
mas, para isso, você deve primeiramente entender suas características
e adquirir habilidades para a sua implementação em uma linguagem de
programação. Nesta unidade, algumas técnicas de programação em C
foram apresentadas e é fundamental que você pratique os conceitos
estudados, principalmente sobre ponteiros e funções. Tente exercitar
e replicar os exemplos que foram estudados, assim como desenvolver
novos programas utilizando essas técnicas de programação em C.

U1 - Algoritmos e seus tipos de representação e estrutura de dados38

Atividades de aprendizagem da unidade

1. Para se programar em qualquer linguagem são utilizadas variáveis para o
armazenamento de dados. Cada variável possui um tipo de dado específico,
dependendo de sua finalidade; e em relação a tais tipos, analise as seguintes
afirmativas:
(I) O tipo de dados na perspectiva computacional é entendido como métodos
de interpretação da memória do computador, ou seja, o que ele pode fazer.
(II) Se o tipo de dados for dissociado do computador ou da máquina, ele é
chamado de Tipo Abstrato de Dados – TAD.
(III) A Estrutura de Dados (ED) é a maneira de se implementar um Tipo
Abstrato de Dados (TAD).
Assinale a alternativa correta.
a) Apenas a afirmativa II está correta.
b) Apenas as afirmativas I e II estão corretas.
c) Apenas as afirmativas I e III estão corretas.
d) Apenas as afirmativas II e III estão corretas.
e) As afirmativas I, II e III estão corretas.

2. Uma função é um conjunto de instruções desenhadas para cumprir uma
tarefa particular e agrupadas numa unidade com um nome para referenciá-
la. Considere o seguinte programa:

int Funcao1 ()
{
 int a, b, x;
 printf (“Digite um numero: \n“);
 scanf(“%d”, &a);
 printf (“Digite um numero: \n“);
 scanf(“%d”, &b);
 x = a * b;
 printf(“\nResultado = %d“, x);
}

int main ()
{
 Funcao1 ();
 system(“PAUSE”);
 }

Em relação ao programa, analise as afirmativas e as classifique como
Verdadeiras (V) ou Falsas (F):

U1 - Algoritmos e seus tipos de representação e estrutura de dados 39

I) A função desse programa é invocada no programa principal através do
comando “Funcao1 ();”.
II) Com a chamada de função, a execução do programa principal para e a
função é iniciada, criando duas variáveis do tipo inteiro.
III) Ao final da execução de todos os comandos da função, a execução do
programa retorna à linha posterior, à chamada da função no programa
principal.
Assinale a alternativa que contém a sequência correta.
a) V-V-V.
b) F-V-V.
c) V-F-V.
d) V-F-F.
e) F-F-F.

3. A passagem por referência utiliza um operador, chamado de operador
unário de referência, e é simbolizado por “&”. Considere as instruções:
int a;
int & x = a;
Em relação a essas instruções, analise as afirmativas:
I) O operador &x = x indica que agora x é outro nome para a.
II) As operações nas duas variáveis (a e x) não têm o mesmo resultado.
III) O operador “&” faz referência ao conteúdo de uma variável.
IV) Uma referência não é uma cópia da variável a qual se refere, mas sim, a
mesma variável sob diferentes nomes.
Assinale a alternativa correta:
a) Apenas a afirmativa I está correta.
b) Apenas as afirmativas I e IV estão corretas.
c) Apenas as afirmativas I e III estão corretas.
d) Apenas as afirmativas II e III estão corretas.
e) As afirmativas I, II, III e IV estão corretas.

4. Nesta unidade, foi estudado o conceito de registro, que armazena vários
campos com tipos de dados diferentes. Considere o seguinte programa:
#include <iostream.h>

typedef struct {
 int matricula;
 char nome[100];
 float nota1;
 float nota2;
} Aluno;

U1 - Algoritmos e seus tipos de representação e estrutura de dados40

int main()
{
 Aluno alunos[3];
 printf("Dados: nome, matricula, nota1, nota2\n");
 for(int i=0; i < 3; i++){
 printf("\nInforme os dados do aluno(%i): ",i+1);
 scanf("%s %i %f %f",alunos[i].nome, &alunos[i].matricula,
 &alunos[i].nota1, &alunos[i].nota2);
 }

 printf("\nMatricula\tNome\tMedia\n");
 for(int i=0; i < 3; i++) {
 printf("% f\n",alunos[i].matricula,alunos[i].nome,(alunos[i]. nota1 +
alunos[i]. nota2) / 2);
 }

 system(“PAUSE”);
}

Considerando o código apresentado, qual a finalidade desse programa?
a) Encontrar a menor média de um aluno.
b) Encontrar a maior média de um aluno.
c) Calcular e exibir as médias de três alunos.
d) Encontrar os valores pares das matrículas dos alunos.
e) Encontrar os valores ímpares das matrículas dos alunos.

U1 - Algoritmos e seus tipos de representação e estrutura de dados 41

Referências
JUNIOR, Dilermando Piva; et al. Estrutura de Dados e Técnicas de Programação. Rio de
Janeiro: Elsevier-Campus, 2014.

MIZRAHI, Viviane Victorine. Treinamento em linguagem C++. São Paulo: Makron, 2006.

TENENBAUM, Aaron M.; LANGSAM, Yedidyah; AUGENSTEIN, Moshe J. Estruturas de
dados usando C. São Paulo: Pearson Makron Books, 2004.

VELOSO, Paulo; et al. Estrutura de dados. Rio de Janeiro: Campus, 1986.

U1 - Algoritmos e seus tipos de representação e estrutura de dados42

Unidade 2

Tipos e estruturas de dados

Nesta unidade, você será apresentado aos tipos de dados
pertinentes ao desenvolvimento de sistemas e a suas características
principais. O objetivo é que você conheça esse tema com detalhes
e, a partir disso, possa tomar boas decisões em seus projetos, no que
tange à escolha e definição da estrutura de dados utilizada.

Você também conhecerá os tipos de dados existentes e aqueles
possíveis de serem implementados na linguagem C - uma linguagem
popularmente conhecida e que serve de base para outras - bem
como os comandos, as funções e a sintaxe dessas implementações.

Por fim, ao conhecer os tipos de dados abstratos e compostos,
homogêneos e heterogêneos, você será capaz de criar estruturas
adequadas para seus programas utilizando dados primitivos.

Objetivos de aprendizagem

Na Seção 1, estudaremos os vetores - uma estrutura de dados vastamente

utilizada e disponível em praticamente todas as linguagens de programação.

Sua ampla utilização se deve às vantagens de representação, que também serão

abordadas, e ao fato de ser uma estrutura aplicável em diversos tipos de dados

primitivos.

Seção 1 | Vetores

Na Seção 2, estarão presentes os conceitos envolvendo matrizes (que

são extensões dos vetores e muito úteis em aplicações comerciais), uma vez

que são utilizadas em agrupamento de dados com mais de uma referência de

classificação, e em aplicações de processamento de imagens ou outras estruturas

multidimensionais.

Seção 2 | Matrizes

Nathalia dos Santos Silva

Na Seção 3, veremos tipos de dados adicionais criados para atenderem uma

demanda de maior organização na manipulação de dados, classificados conforme

o nível de detalhes e especificações que carregam, passando por dados abstratos,

compostos e heterogêneos.

Seção 3 | Tipos de Dados

Introdução à unidade
Esta unidade traz os conceitos sobre os principais tipos avançados

de dados e de como manipulá-los, bem como sua sintaxe, por meio
da linguagem de programação C. Vamos nos aprofundar nos tipos de
dados avançados, além daqueles dados primitivos que você já estudou,
com o objetivo de abranger uma classe maior de representação para
serem utilizados em problemas reais.

Desde o surgimento dos computadores e sistemas de informação,
os tipos de dados existentes têm evoluído, a grande maioria deles são
muito funcionais e, por isso, estão descritos nesta unidade.

As operações que realizamos por meio dos comandos de uma
linguagem de programação estão diretamente relacionadas às
operações suportadas pelos dados que escolhemos, por isso, é
importante que conheçamos as possibilidades e limitações dos tipos
de dados (EDELWEISS; GALANTE, 2009).

Como os dados são a base dos sistemas de programação, eles
devem estar inseridos em nossas escolhas quanto à definição dos
aspectos de implementação, até mesmo por influenciarem na
simplicidade, complexidade e na organização do código.

Algumas representações são óbvias e não causam dúvidas, como
o tipo int escolhido para um contador, o tipo float para altura de uma
pessoa, entre outros frequentemente utilizados; entretanto, algumas
informações podem necessitar de uma pequena avaliação para serem
bem representadas, por exemplo: a data de nascimento é um dado
numérico? É interessante que eu a imprima no formato --/--/--? Ela
deve ser decomposta em dia, mês e ano para algum cálculo de
verificação de idade?

As respostas para essas perguntas podem variar conforme a
necessidade do projeto e influenciar na escolha do tipo de dados. Por
exemplo, se a data for utilizada para algum cálculo, é interessante que
ela seja numérica, se for só um dado informativo, pode ser um string,
e ela pode, inclusive, ser armazenada no formato para impressão.
Seguindo o mesmo exemplo, caso fosse necessário, fazer um cálculo
para determinar a idade de uma pessoa, ou ainda caso fosse interessante
apresentar a data em formatos diferentes, o ideal seria armazenar os

valores da data em três variáveis, e não somente uma contendo tudo.

Visto isso, a decisão sobre a escolha dos dados deve ser tomada
conforme a necessidade levantada, e ainda, deve buscar a solução
menos custosa quanto à utilização de memória, ao mesmo tempo em
que garanta produtividade em seu desenvolvimento (SZWARCFITER;
MARKENZON, 2015)

U2 - Tipos e estruturas de dados 47

Seção 1

Vetores
Introdução à seção

Você já observou como as construções verticais, como edifícios,
permitem agrupar um número maior de moradores em um mesmo
endereço (rua e número)? A estrutura de vetores é muito semelhante
a essa forma de alocação! Com um mesmo identificador, ou seja, o
nome de variável, é possível referenciar um maior conjunto de dados,
desde que sejam de mesmo tipo. E como os apartamentos, os vetores
possuem uma organização interna.

Os vetores são estruturas de dados comumente utilizados para
melhor organizar variáveis relacionadas entre si conceitualmente; por
serem versáteis, podem admitir diversos tipos primitivos. Esta seção
abordará como são tratados os vetores na linguagem C, sua sintaxe,
os principais comandos e as operações permitidas sobre esses dados.

1.1 Sintaxe para declaração de Vetores

Os vetores permitem que dados de mesmo tipo e mesmo
significado conceitual sejam agregados por um mesmo nome de
variável (PEREIRA, 2016), como o exemplo citado dos edifícios.
Internamente, o responsável pela organização e identificação de cada
item é o índice, que deve sempre ser um número inteiro, ou seja, o
int. No entanto, quanto ao tipo de dados do vetor, esse pode ser int,
float, string, double, bool ou char; ou seja, os tipos de dados primitivos
básicos aceitos pela linguagem C.

Os vetores também são conhecidos como estruturas de dados
estáticas, pois seu tamanho permanece o mesmo em tempo de
execução (TENENBAUM; LANGSAM; MOSHE, 1995).

Imagine: se pudéssemos descrever fisicamente um vetor, ele teria a
forma ilustrada na Figura 2.1:

U2 - Tipos e estruturas de dados48

Fonte: elaborada pela autora.

Figura 2.1 | Vetor “num”

Para obtermos o vetor da Figura 1.1, iniciaremos pela declaração do
vetor:

Neste exemplo foi criado um vetor de 5 posições para inteiros,
chamado num. Podemos afirmar que esse vetor é do tipo int. e iniciar
com um vetor já preenchido, como na Figura 2.2:

Um vetor pode ter qualquer valor inteiro em cada posição alocada.
Para demonstrar a alocação de vetores de outros tamanhos e tipos,
mantemos a mesma sintaxe com os respectivos parâmetros:

Para isso, devemos implementar o seguinte código:

Fonte: elaborada pelo autor.

 Figura 2.2 | Vetor “num” preenchido

int num[5];

int num[5] = {10, 15, 20, 25, 30};

U2 - Tipos e estruturas de dados 49

Esse trecho implementa a declaração de 2 vetores, sendo a primeira
linha o vetor de 10 elementos em ponto flutuante com identificado
valor; o segundo, um vetor resposta para armazenar 3 caracteres.

Da mesma forma que variáveis podem ser declaradas e atribuídas
em um mesmo comando, vetores também:

Observe que podemos tentar atribuir mais ou menos elementos
que a quantidade declarada no vetor, e isso não foi impedido pelo
compilador, o que é uma desvantagem, pois pode causar erros de lógica
ou acessar espaços indevidos de memória, e tudo ser imperceptível ao
programador.

Um vetor também pode ter seu tamanho declarado através de seus
elementos:

Outra desvantagem desse tipo de declaração é não ser explícita a
quantidade de elementos do vetor.

1.2 Sintaxe para acessar elementos do vetor

É importante ressaltar que um vetor de tamanho n possui posições
determinadas pelos índices de 0 ao n-1; ou seja, um vetor de 5
posições manipula do índice 0 ao 4; o índice, então, é o valor que
indica a posição que queremos acessar no vetor:

float valor [10];
char resposta [3];

float valor [10] = {3, 4};
char resposta [3] = {'a', 'c', 'd', 'a', 'b'};

int n[] = {1, 2, 4, 8, 10, 12};

int nun[5] = {10, 15, 20, 25, 30};

X = num [3];

U2 - Tipos e estruturas de dados50

Nesse comando, estamos atribuindo à variável x o conteúdo do
vetor na posição 3, ou seja, a 4ª posição da esquerda para direita, que
é igual ao valor 25.

Podemos, também, inserir um valor em um elemento específico do
vetor, aliás, é a única maneira de alterarmos o valor do vetor ao longo
do código, depois de sua declaração. A sintaxe é análoga à atribuição
de dados simples:

Essa sintaxe representa a ação de inserir o valor 17 na posição 2 do
vetor.

Para saber mais

Os valores contidos nos vetores permitem as mesmas operações
que seus tipos, e como são versáteis, permitem várias possibilidades
a partir da lógica com seus índices e valores. Você pode treinar mais
sobre as operações em vetores: <https://www.ime.usp.br/~macmulti/
exercicios/vetores>. Acesso em: 10 ago. 2017.

Questão para reflexão

Nos exemplos apresentados foram criados vetores de inteiros e ponto
flutuante. Podemos criar vetores de strings em linguagem C? O conceito
de vetor será mantido?

1.3 Sintaxe com laços para percorrer o vetor

Como podemos perceber, em todas as operações que fazemos
com vetores em C é feito elemento a elemento, então, sempre
utilizaremos um laço para percorrer os vetores através dos elementos,
um a um, por meio de um índice inteiro e sempre representado por i.

Também, é através do laço que imprimimos os valores dos
elementos do vetor na tela, um a um, controlado pelo seu índice.

Pensando em uma boa prática de programação, o ideal é utilizar o

nun[2] = 17;

U2 - Tipos e estruturas de dados 51

comando define, dada a necessidade de se alterar o tamanho do vetor
e de todas as funções a ele pertinentes, alteramos este valor somente
uma vez no início do código, como no código da Figura 2.3, em que o
controle do laço segue automaticamente o valor do comando define:

Fonte: elaborada pela autora.

Figura 2.3 | Código de inserção e impressão de valores nos vetores

Como explicado, o processo de preenchimento do vetor, seus
cálculos e a impressão na tela são feitos elemento a elemento,
normalmente por meio de um laço for.

A seguir, traremos um código (na Figura 2.4) que preenche
diferentes vetores, para que você conheça algumas possibilidades e,
posteriormente, possa adaptá-las conforme sua necessidade.

U2 - Tipos e estruturas de dados52

Fonte: elaborada pela autora.

Figura 2.4 | Código de inserção e impressão de valores nos vetores

Exemplo 2.1:

Considere uma loja que paga uma comissão de 5% aos seus
funcionários e precisa calcular a comissão de um ano, conforme as
vendas de cada um. Implemente um programa que atenda a essa
necessidade.

Como é um problema de diversos dados (comissão ao longo dos
12 meses) e possuem certa semelhança e significado, podemos e
devemos utilizar vetores.

O código apresentado na Figura 2.5 apresenta a solução em C para
esse problema.

U2 - Tipos e estruturas de dados 53

Fonte: elaborada pela autora.

Figura 2.5 | Solução do Exemplo 1.1

Atividades de aprendizagem

1. Ao trabalharmos com vetores, precisamos saber controlar seus índices
- esse é um passo essencial. Sabendo disso, analise as afirmações a seguir:
I – A primeira posição de um vetor é sempre identificada por [0].
II – Um vetor de 5 posições permite o acesso à sua última posição através
do índice [5].
III – A soma dos elementos de dois vetores, A e B, é realizada pelo código
A[] + B[].
Assinale a alternativa correta:
a) Somente I está correta.
b) Somente II está correta.
c) Somente III está correta.
d) Somente I e II estão corretas.
e) Somente I e III estão corretas.

U2 - Tipos e estruturas de dados54

2. Bruno precisa de um programa que trabalhe com os dados de
sua pesquisa; precisa armazenar informações sobre 100 amostras e,
posteriormente, fazer uma média aritmética delas. Assinale a alternativa
que contém a declaração adequada e correta das estruturas de dados que
ele usará:
a) int amostras[100] ; int media.
b) int amostras; char media[100].
c) float amostras[100] ; float media.
d) float amostras[100] ; int media.
e) char amostras[100] ; float media[100].

U2 - Tipos e estruturas de dados 55

Seção 2

Matrizes
Introdução à seção

Você percebeu que vetores são muito úteis para a programação
de algoritmos ao agruparem diversos dados em uma estrutura de
variável com o mesmo nome. Agora, saiba que podemos estender
esse comportamento e criar matrizes! São semelhantes aos vetores
em algumas características básicas e possuem uma notação que as
identifica como matrizes.

2.1 Sintaxe para declaração de matrizes

As matrizes podem ser abstraídas como vetores bidimensionais, ou
seja, um conjunto de dados de mesmo tipo organizados de maneira
estruturada e reconhecidos por um mesmo identificador. Como
estamos criando uma estrutura de dados de duas dimensões, com
linha e coluna, precisamos de dois argumentos para dimensionar a
matriz e dois índices de controle.

Colocando um adendo no parágrafo anterior, a matriz pode ser
uma abstração de duas dimensões para facilitar o entendimento dos
programadores, porque, em C, a matriz é armazenada e acessada de
maneira linear (MIZRAHI, 2008).

A sintaxe para declaração da matriz é:

2.2 Sintaxe para manipulação de matrizes

Como criamos laços para acessar os elementos dos vetores, um a
um, com as matrizes é análogo, assim como as atribuições.

Vamos analisar, na prática, como ficaria o nosso Exemplo 1.1 de
vendas e comissão, caso tivéssemos mais de um vendedor, através da
Figura 2.6:

int matriz [2] [3];

U2 - Tipos e estruturas de dados56

Fonte: elaborada pela autora.

Figura 2.6 | Código de matrizes

Como toda atividade de implementação, é sugerido que você
compile o programa e, então, faça alterações na lógica conforme a
necessidade!

Para saber mais

Alguns programas, como o Scilab ou o Matlab, são desenvolvidos
para trabalharem especialmente com matrizes, dada a versatilidade
e aplicabilidade desse conceito tão utilizado na programação! Você
pode conhecer mais sobre isso em: <http://www.mat.ufmg.br/~espec/
tutoriais/scilab>. Acesso em: 10 ago. 2017.

Questão para reflexão

Podemos ter matrizes com mais de 2 dimensões?

U2 - Tipos e estruturas de dados 57

Atividades de aprendizagem

Para responder às questões 1 e 2, considere o código a seguir:

1. O mais importante na manipulação de matrizes é controlar seus laços
e índices, sabendo disso, e com base no código apresentado, assinale a
alternativa correta:
a) A matriz possui 6 elementos.
b) A matriz possui 20 elementos.
c) O valor impresso será 2.
d) O valor impresso será 6.
e) Será impressa a matriz toda.

2. Ainda com base no código apresentado, assinale a alternativa incorreta:
a) O elemento matriz[0][0] não teve atribuição de valores.
b) O comando matriz[4][4] = 10 apesar de inválido pode ser aceito pelo
compilador.
c) O valor 9 não aparece na matriz em nenhum elemento.
d) O elemento matriz[3][4] é igual a 12.
e) Após o comando x = matriz[2][2], x passa a valer 4.

U2 - Tipos e estruturas de dados58

Seção 3

Tipos de Dados
Introdução à seção

Um tipo de dado é um conceito que reúne informações sobre um
conjunto que pode ser representado com aquelas especificações, por
exemplo, o tipo char reúne especificações de caracteres.

Como boa parte dos conceitos computacionais, eles estão
diretamente envolvidos com o hardware do computador e com
propriedades lógicas sobre ele, ou seja, as operações e cálculos
suportados.

O conceito que discutiremos nesta seção é uma especificação de
como um novo tipo é representado por objetos de tipos de dados já
existentes e de como será manipulado pelo software (TENENBAUM;
LANGSAM; MOSHE, 1995).

Esta seção apresenta os tipos de dados que podemos encontrar
para implementar soluções através de algoritmos em linguagem
C e, portanto, a dividimos em Dados do tipo: Abstrato, Complexo e
Heterogêneo; e vamos discutir cada um deles.

3.1 Tipos de Dados Abstratos

Do inglês Abstract Data Types (ADT), ou sua sigla em português TDA,
é uma representação de dados acompanhada das operações que se
pode fazer com eles (DEITEL; DEITEL, 2011). As variáveis passam a ser
mais do que acessórios na programação, elas descrevem o cenário a
ser modelado, isso é, estão mais próximas em descrever o mundo real
e menos voltadas aos detalhes específicos de implementação.

O conceito de Abstração de Dados é muito semelhante a uma
caixa-preta com entrada e saída de informações, justamente por
representar de maneira fiel as necessidades levantadas e o que precisa
ser realizado, sem detalhar como o compilador trata as particularidades
dos dados em si.

Deitel e Deitel (2011) exemplificam que o computador não tem
uma referência de significado para os tipos matemáticos como int,
float ou double, por exemplo; ele apenas possui mecanismos para
representar e processar informações pertinentes a tais dados de uma

U2 - Tipos e estruturas de dados 59

maneira que sejam viáveis e fisicamente capazes de relacionar com as
características do que conhecemos que seja um número inteiro ou um
ponto flutuante, de precisão simples ou dupla, respectivamente.

Sempre que esse tipo é escolhido em nossa implementação,
devemos conhecer as operações que podemos realizar sobre ele e
se possuem alguma restrição ou limitação, já que nem todos os tipos
matemáticos podem ser implementados em todas as máquinas a
partir dos programas (TENENBAUM; LANGSAM; MOSHE, 1995). Então,
podemos entender que os tipos de dados abstratos são maneiras de
representar os conjuntos que conhecemos no mundo real em um
nível de abstração que seja adequado para o computador.

Adicionalmente, utilizamos tipos de dados abstratos em estruturas
de dados como vetores, filas e pilhas, detalhadas ao longo deste livro,
com os quais não precisamos nos preocupar devido à forma como
esses dados são operados pelo hardware, só precisamos saber utilizar
as operações, como inserir ou retirar, sobre os elementos.

Em implementações com C, você pode criar tipos abstratos com
structs e os tipos typedef; já em C++, C# ou Java você também pode
criar seus próprios tipos abstratos através de classes.

3.2 Tipos Compostos de Dados

Os tipos compostos de dados são formados a partir dos tipos
primitivos de dados, ou seja, daquelas estruturas mais simples da
linguagem, como os tipos int, float, double, ou char, organizados e
combinados de maneira a formarem uma nova estrutura, também são
conhecidos como tipos derivados (PINHEIRO, 2012).

Dois desses tipos são o vetor e a matriz, que vimos anteriormente.
Eles são uma estrutura de dados homogêneos, ou seja, todos seus
integrantes são do mesmo tipo, e possuem uma capacidade limitada
de elementos; no entanto, por limitada não entendamos como pouca
ou pequena, e sim como um valor conhecido.

String é um outro tipo de dado composto, pois trata-se de um
conjunto ordenado de caracteres e, por ser um vetor em C, é tratada
como ponteiro.

As strings podem armazenar uma série de caracteres entre letras,
números, caracteres especiais, sequência de caracteres com espaços,
formando uma frase etc. Por ser tratada com um dado somente, daí
sua definição de dado composto.

O tamanho da string pode ser de qualquer comprimento; ela deve,

U2 - Tipos e estruturas de dados60

sempre, terminar com o caracter nulo (‘\0’, leia-se barra invertida zero) e
se tentarmos armazenar na string um valor de caracteres maior àquele
declarado, os dados sobressalentes irão sobrescrever outros dados em
posições da memória que sucedem o local de memória alocado para
essa string (DEITEL; DEITEL, 2011).

Podemos definir a string da seguinte maneira:

A saída resultante será:

Nathalia

Nath

Se esquecermos o ‘\0’ ao final dessa declaração de chars (na segunda
declaração), a variável conterá dados de memória não desejáveis, o
que também, usualmente, chamamos de lixo de memória.

Quanto à entrada de dados, o comando scanf não lê espaços ou
mudanças de linha e é limitado em 19 caracteres. Ou seja, para um
sobrenome com dois nomes, não seria possível adotá-lo:

Para uma entrada no scanf no formato “da Silva”, o tipo string só
armazenaria o “da”, sendo assim, precisamos de funções específicas
que tratem strings, como getchar, ou outras contidas na biblioteca
stdio.h (MIZRAHI, 2008):

U2 - Tipos e estruturas de dados 61

Para saber mais

O conteúdo de strings é muito amplo e os comandos para manipulá-
las são muitos, principalmente devido à flexibilidade de se trabalhar
com um vetor; aliás, poderíamos ter um outro capítulo escrito somente
para lidar com as strings. No entanto, você pode conhecer mais sobre
o assunto no livro C: como programar, de Paul Deitel e Harvey Deitel.

Um outro tipo composto de dados, que é utilizado na linguagem
C, é a estrutura, ou struct, também conhecida como registro; ela
possui um conjunto de membros, sendo cada membro um dado com
identificador próprio, também chamado de campo.

Pode ser declarado da seguinte maneira (TENENBAUM; LANGSAM;
MOSHE, 1995):

U2 - Tipos e estruturas de dados62

Sendo nome e sobrenome os membros da estrutura, e autor1 e
autor2 as variáveis criadas desse tipo. Como uma forma mais completa
e intuitiva, incentivando a melhor organização do código, também
podemos criar um nome para a estrutura, e assim declarar as estruturas
na linha seguinte:

Observe que as duas declarações resultam no mesmo objetivo.

Ainda é possível que criemos um tipo composto abstrato de dados,
isso é, apliquemos os conceitos de TDA para obter esta estrutura:

Seus membros são acessados da seguinte maneira:

Criamos um programa que imprime o nome completo e o nome
abreviado das pessoas - como utilizamos em referências bibliográficas
para autores de livros. Acompanhe e, se possível, implemente o código
descrito na Figura 2.7:

U2 - Tipos e estruturas de dados 63

Fonte: elaborada pela autora.

Figura 2.7 | Programa em C para operar structs

Questão para reflexão

É possível e viável criar um vetor de structs?

3.3 Tipos de dados Heterogêneos

Da mesma forma que criamos structs com um único tipo - no caso,
o tipo char -, poderíamos ter criado structs com o único tipo int ou
float, e seriam todas consideradas structs homogêneas, ou seja, um
tipo de dados homogêneos. Ao mesmo tempo, se quiséssemos criar
uma struct que contivesse tipos distintos de dados, como os tipos int

U2 - Tipos e estruturas de dados64

e char, essa estrutura de dados passaria a ser uma estrutura de dados
heterogêneos, ou uma coleção heterogênea de dados (PEREIRA,
2016). Esse tipo de dados também é conhecido na linguagem C como
registro, e pode ser implementado como a definição a seguir, na Figura
2.8:

Fonte: elaborada pela autora.

Figura 2.8 | Struct de dados heterogêneos

U2 - Tipos e estruturas de dados 65

Repare que a grande vantagem desse tipo de dados é a organização
que ele possibilita ao programador: os dados dos registros possuem o
mesmo prefixo. Além do mais, se houvesse a necessidade de cadastrar
diversos jogadores, e não fosse usado struct, teríamos uma quantidade
muito maior de variáveis para manipular.

Atividades de aprendizagem

1. (Adaptado de ENADE, 2011) O conceito de Tipo de Dados Abstrato
(TDA) é popular em linguagens de programação. Nesse contexto, analise as
afirmativas a seguir:
I. A especificação de um TDA é composta das operações aplicáveis a ele, da
sua representação interna, e das implementações das operações.
II. Se S é um subtipo de outro T, então entidades do tipo S em um programa
podem ser substituídas por entidades do tipo T, sem alterar a corretude
desse programa.
III. É possível construir TDA a partir de dados compostos.
É correto apenas o que se afirma em:
a) I.
b) II.
c) III.
d) I e II.
e) I e III.

2. Considere como base o programa implementado na Figura 2.7. O trecho
do programa que imprime o nome abreviado do autor poderia ter sido
implementado de uma outra maneira, ainda equivalente.

Analise as afirmativas a seguir e assinale aquela que apresenta o conteúdo
correto no lugar dos símbolos:
a) autor1.nome[0].
b) nome[0].
c) autor1.primeiraletra.
d) autor1.primeiraletra[0].
e) Autor0.primeiraletra[1].

U2 - Tipos e estruturas de dados66

Fique ligado

Você viu nesta unidade como os dados, em suas diferentes formas,
influenciam a programação e que os tipos existentes podem vir a
formar novos tipos de dados, sempre que nossa aplicação necessitar.
Não deixe de resolver os exercícios e se desafie a implementar os
exemplos! É a prática dos conceitos que vai fazê-lo adquirir afinidade
com os tipos de dados e entender como utilizá-los.

Para concluir o estudo da unidade

Você deve estudar os conceitos sobre os tipos de dados, afinal,
eles explicam como são formadas as diversas possibilidades que
encontramos quando nos referimos a dados. Embora a sintaxe e
as limitações acerca dos dados possam variar de linguagem para
linguagem, conhecer os conceitos em uma como a C permite que
você entenda melhor os outros tipos de dados de outras linguagens
derivadas, como C++ e C#.

Atividades de aprendizagem da unidade

1. Os elementos de um array são relacionados entre si pelo fato de que
possuem o mesmo ___________ e ______________.
Assinale a alternativa que preenche corretamente as lacunas:
a) Tipo; identificador.
b) Dado; estrutura.
c) Tipo; valor.
d) Valor; identificador.
e) Dado; local na memória.

U2 - Tipos e estruturas de dados 67

2. Considere o código a seguir:

Assinale a alternativa correta:
a) A linha 9 apresenta um erro.
b) O número 10 é o conteúdo da variável matriz na parte alta.
c) X é o índice.
d) 45 é o conteúdo de um elemento da matriz.
e) O elemento matriz[10][4] é igual ao elemento matriz[45].

3. Considere a declaração a seguir:

Assinale a alternativa correta:
a) nomeItem[1] tem valor N.
b) nome[] é um dado do tipo primitivo.
c) nomeItem é uma matriz de 5 dimensões.
d) A primeira impressão na tela é somente N.
e) nome é um vetor de caracteres.

4. Analise as informações a seguir e classifique-as como verdadeiro (V) ou
falso (F):
() Um mesmo vetor armazena valores de tipos distintos.
() Uma mesma matriz armazena valores de tipos distintos.

U2 - Tipos e estruturas de dados68

() Uma struct organiza valores de tipos distintos.
() Uma struct é um tipo de dado primitivo.
() Um vetor de inteiros é um tipo composto.
a) F – F – V – F – V.
b) F – V – V – F – V.
c) V – V – F – F – V.
d) V – V – V – F – V.
e) F – F – V – V – V.

5. As operações que realizamos, por meio dos comandos de uma linguagem
de programação, estão diretamente relacionadas às operações suportadas
pelos dados que escolhemos, por isso, é importante que conheçamos
as possibilidades e limitações dos tipos de dados (EDELWEISS; GALANTE,
2009).
Analise as alternativas a seguir e assinale a incorreta:
a) É possível implementar um vetor de um tipo composto de dados.
b) Uma matriz é um elemento linear, porém composto.
c) Para trabalhar com tipo de dados abstrato devemos conhecer sua
estrutura interna.
d) Um tipo char é um dado primitivo, já um tipo char[] é um dado composto.
e) Os índices de vetores e matrizes devem ser inteiros.

U2 - Tipos e estruturas de dados 69

Referências
DEITEL, Paul; DEITEL, Harvey. Como programar: em C. 6. ed. São Paulo: Bookman, 2011.
692 p.

EDELWEISS, Nina; GALANTE, Renata. Estrutura de dados. Porto Alegre: Bookman, 2009.

MIZRAHI, Victorine Viviane. Treinamento em Linguagem C. São Paulo: Pearson, 2008.

PEREIRA, Silvio do Lago. Estrutura de Dados em C: uma abordagem didática. São Paulo:
Érica, 2016. 184p.

PINHEIRO, FRANCISCO A. C. Elementos de programação em C. Porto Alegre: Bookman,
2012.

SZWARCFITER, Jayme Luiz; MARKENZON, Lilian. Estruturas de dados e seus algoritmos.
3. ed. Rio de Janeiro: LTC, 2015.

TENENBAUM, Aaron M.; LANGSAM, Y.; MOSHE J. A. Estruturas de dados usando C. São
Paulo: Makron Books, 1995.

Unidade 3

Estrutura de dados

•	� Analisar e distinguir as estruturas de dados relacionados à
pilha, fila e listas;

•	� Entender a lógica utilizada para a implementação das pilhas,
filas e listas;

•	� Conhecer e aplicar ponteiros e alocação dinâmica de
memória;

•	 Compreender sobre os algoritmos de pesquisa;

•	 Compreender os conceitos relacionados à classificação.

Objetivos de aprendizagem

Esta é a primeira seção da nossa Unidade 3. Nela, nós apresentamos detalhes

sobre a alocação dinâmica, suas principais funções e conceitos relacionados

a ponteiros. Pode-se entender a alocação dinâmica como alocação de

espaços na memória em tempo de execução do programa. Essa estratégia de

desenvolvimento permite que a quantidade de memória, que está sendo alocada,

possa ser aumentada ou reduzida, conforme necessidade.

Seção 1 | Alocação dinâmica de memória

Sendo dois dos conceitos mais usados, a pilha e a fila, ambas promovem a

organização dos elementos (chegada e saída). Para a fila, consideramos o critério

FIFO (do inglês first in first out), o primeiro item que entra é o primeiro elemento

que sai; e, para a pilha, o critério LIFO (do inglês last in, first out), o último elemento

que chega é o primeiro elemento que sai. No entanto, para implementá-los, existe

uma série de estratégias, e é o que mostraremos em detalhes nesta seção.

Seção 2 | Listas e seus casos específicos (pilha e fila)

Merris Mozer

Nesta seção, abordaremos os algoritmos para pesquisa de uma determinada

informação, seja em um vetor ou matriz. Existem métodos que tornam as buscas

mais eficientes; esses algoritmos, por exemplo, utilizam elementos que são usados

para comparação com os demais elementos do conjunto; logo, as pesquisas

podem retornar o valor procurado ou retornar nulo (caso o elemento não exista

no conjunto pesquisado). Para tanto, abordaremos os seguintes métodos de

pesquisa: sequencial, binário e interpolação.

Seção 3 | Algoritmos de pesquisa

Quando falamos em classificação, ou ordenação, estamos lidando com um

dos ingredientes mais conhecidos na área de desenvolvimento de sistemas, cujo

objetivo é organizar um conjunto de informações semelhantes em uma ordem

crescente ou decrescente. Nesta seção, abordaremos suas características e seus

aspectos de forma global, bem como suas funções.

Seção 4 | Classificação

Introdução à unidade
Caro(a) aluno(a), seja bem-vindo(a) à disciplina Linguagem de

Programação e Estrutura de Dados.

Quando falamos em desenvolvimento de sistemas, precisamos
pensar que a construção deve ser bem projetada, desse modo, a
estrutura de dados traz os conceitos e a compreensão de como os
dados devem ser armazenados e recuperados. A fim de mostrar essa
importância, trazemos, nesta unidade, os conceitos relacionados à
alocação dinâmica de memória, algoritmos de pesquisa, classificação,
pilhas, filas e listas.

A alocação dinâmica representa um procedimento que solicita
o andamento do programa e faz uso da memória dele enquanto é
executado; para isso, são usados diversos métodos e conceitos, cujo
detalhamento você poderá conferir na Seção 1.

Quando analisamos as aplicações existentes, dois dos conceitos
mais usados é o de pilha e fila. Ambas promovem a organização dos
elementos (chegada e saída). Para a fila, consideramos o critério FIFO
(do inglês first in first out), o primeiro item que entra é o primeiro
elemento que sai; para a pilha, o LIFO (do inglês last in, first out), o
último elemento que chega é o primeiro elemento que sai. Quanto
às listas, das quais pilha e fila também fazem parte, seus conceitos
também serão detalhados, bem como uma série de estratégias para
implementá-los – apresentados na Seção 2.

Um algoritmo de pesquisa tem como objetivo encontrar um ou
mais elementos em um determinado conjunto de registros, cujo
resultado, ao executá-lo, pode ser bem-sucedido ou não. Em relação
aos métodos de pesquisa, existem inúmeros: pesquisa sequencial,
pesquisa binária e pesquisa interpolação; cada um deles será descrito
na Seção 3.

Por fim, na Seção 4, trataremos o processo de classificação ou,
simplesmente, ordenação, que tem como objetivo organizar um
conjunto de informações semelhantes em uma ordem crescente
ou decrescente. Dentre os mais diversos motivos para realizar uma
ordenação sequencial, pode-se ressaltar a possibilidade de acesso aos
dados de forma mais eficiente.

U3 - Estrutura de Dados74

Seção 1

Alocação dinâmica de memória
Introdução à seção

Sobre alocação dinâmica, Laureano (2008) descreve que ela ocorre
em tempo de execução, na qual uma determinada variável e sua
estrutura são declaradas sem que haja a necessidade de definição de
tamanho. Ao executar o programa, a memória será reservada quando
houver a necessidade de utilização de uma variável ou parte dela.
Esse tipo de alocação é bastante usado para resoluções de problemas
de estrutura de dados, como para filas, árvores dinâmicas ou listas
encadeadas.

No entanto, antes de iniciar o estudo sobre as funções para
alocações dinâmicas, é necessário que você entenda dois conceitos:
endereços e ponteiros.

Endereços

A memória é composta por uma sequência de bytes (um byte
armazena um conjunto de 256 valores); esses bytes possuem
numeração sequencial e essa numeração é seu endereço.

Ponteiros

Segundo PUCRS (s.d.), um ponteiro é descrito como uma variável
capaz de armazenar um endereço de memória ou o endereço de outra
variável. As variáveis são posições ocupadas na memória e seus valores,
normalmente, são do tipo char, int, float, double, dentre outros. Para
IME2 (s.d.), uma variável do tipo ponteiro pode conter um determinado
valor, ou seja, o endereço para outras posições na memória.

Para declarar um ponteiro, você deve especificar para qual tipo de
variável ele irá apontar. O operador que indica a variável é o *. Exemplo:
ponteiro para um inteiro, int *ponteiro.

Existem quatro tipos de funções para alocações dinâmicas, tais
como: malloc(), calloc(), realloc(), sizeof() e free(); no entanto, as mais
utilizadas são a malloc() e a free() – que falaremos um pouco mais a
seguir.

U3 - Estrutura de Dados 75

Função malloc

Essa função tem como objetivo realizar a alocação de um bloco de
byte (consecutivos) na memória RAM da máquina e fazer a devolução
do endereço do bloco. Para tanto, devemos informar a quantidade de
bytes para a função, e a sintaxe para a função malloc () é:

void *malloc (valor inteiro que representa a quantidade de bytes
a ser alocado).

Na Figura 1.1 exemplificamos esse tipo de função, cuja demonstração
nos revela que um determinado usuário poderá definir o tamanho do
espaço na memória que deverá ser alocado.

Fonte: Sedgewick (1998, p. 87).

Figura 1.1 | Exemplo função malloc()

Função Free

Sempre que houver o término de uma alocação dinâmica durante
a execução de um programa ou aplicação, é necessária a liberação da
memória alocada. A responsabilidade dessa liberação é da função free.

U3 - Estrutura de Dados76

Fonte: UNICAMP (s.d.).

Figura 1.2 | Exemplo função Free()

Para saber mais

Disponibilizamos alguns materiais para complementar seu estudo.

Links

CS. The Stony Brook Algorithm Repository. Disponível em: <http://
www3.cs.stonybrook.edu/~algorith/>. Acesso em: 13 ago. 2017.

IME. Alocação dinâmica de memória. Disponível em: <https://www.
ime.usp.br/~pf/algoritmos/aulas/aloca.html>. Acesso em: 13 ago. 2017.

Livro

HERBERT, S. C Completo e Total. Editora Makron, 3. ed., 1997.

Questão para reflexão

Analise as características relacionadas à alocação dinâmica: quais foram
as principais diferenças percebidas em relação à alocação estática?
Descreva sua percepção e compartilhe com seu professor na área do
aluno.

U3 - Estrutura de Dados 77

Dica de leitura sobre as diferenças entre as alocações: <https://www.
inf.ufes.br/~pdcosta/ensino/2011-2-estruturas-de-dados/slides/
Aula3&4%28vetores&ponteiros%29.pdf>. Acesso em: 13 ago. 2017.

Atividades de aprendizagem

1. Baseando-se na análise dos conceitos relacionados à alocação dinâmica
de memória, assinale a alternativa que descreve um desses conceitos:
a) As funções free() e malloc() são muito importantes para alocação dinâmica.
b) A alocação dinâmica é feita por meio de um vetor definido inicialmente e
que não tem o valor de tamanho alterado.
c) A função malloc() tem como objetivo realizar o merge de dois registros
de dados.
d) Não é necessário trabalhar com ponteiros na alocação dinâmica.
e) A alocação dinâmica não é aplicável nos projetos que utilizam a
metodologia ágil.

2. Analise a afirmativa: Sempre que houver o término de uma alocação
dinâmica durante a execução de um programa ou aplicação, é necessária
a liberação da memória alocada. Essa afirmação refere-se à qual tipo de
função:
a) Função malloc ().
b) Função free ().
c) Pilha.
d) Fila.
e) Main.

3. Pode-se afirmar que existem vários tipos de funções de alocação
dinâmica. Assinale a alternativa que não relacionada um tipo de alocação
dinâmica:
a) Malloc().
b) Free ().
c) Int ().
d) Sizeof ().
e) Main ().

U3 - Estrutura de Dados78

4. Marque a alternativa que mostra a representação gráfica de operador
relacionado ao ponteiro:
a) %.
b) *.
c) #.
d) $.
e) @.

5. Analise as afirmativas relacionadas à alocação dinâmica:
I – A alocação dinâmica permite que seja definido um valor único que deve
ser utilizado até o fim das operações.
II – A função malloc () representa um método de pesquisa de algoritmos.
Marque a alternativa que relaciona as afirmativas corretas:
a) Somente I está correta.
b) Somente II está correta.
c) I e II estão corretas.
d) As duas opções estão incorretas.
e) I é uma opção incompleta e não foi possível analisar e II está correta.

Fique ligado

Nesta seção, apresentamos os conceitos de alocação dinâmica:
endereços, ponteiros e funções principais; bem como alguns exemplos
de códigos relacionados aos conceitos apresentados.

Nas seções que estão na sequência da presente unidade, iremos
avaliar algumas estruturas de dados utilizando o conceito de alocação
dinâmica.

U3 - Estrutura de Dados 79

Seção 2

Listas e seus casos específicos (pilha e fila)
Introdução à seção

Ao estudarmos a disciplina de estrutura de dados, entendemos que
ela é de grande importância na organização, manipulação e localização
de informação em uma determinada aplicação; e três dos conceitos
mais usados é o de lista, pilha e fila.

Podemos ver a lista como uma sequência de itens que estão
organizados em um conjunto, não necessariamente, de maneira lógica,
pode ter um endereço. Por sua vez, considerada umas das estruturas
de dados mais simples, a pilha é uma das estruturas de dados mais
usadas pelas equipes de desenvolvimento de software. Seu objetivo
principal é acessar os itens que estão no topo da lista, aplicando o
critério de que o último elemento a entrar é o primeiro a sair. Para que
fique fácil o entendimento desse conceito, pense na sua pia de louça,
imagine que para organizá-la você deverá colocar um prato sobre o
outro, formando uma pilha, cujo último prato será o primeiro a ser
lavado e a deixará.

Já no caso das filas, a estrutura e os critérios aplicados são outros,
uma vez que diferem na ordem de saída dos itens, sendo que o primeiro
elemento que entra é o primeiro item que sai. Fundamentalmente,
apenas um item pode ser inserido no final e retirado do início. Pense
que você está no mercado, faz todas as suas compras e vai para a fila
do caixa; ao chegar no caixa, você nota que não tem mais ninguém,
ou seja, você é o primeiro. Logo depois, chegam outros clientes, que
ocupam posições seguintes à sua; você, então, paga suas compras e
sai da fila - foi o primeiro a chegar e o primeiro a sair. Ficou fácil?

Esse foi apenas um resumo da seção, nos próximos tópicos vamos
detalhar os conceitos de listas, pilha e fila.

Listas

Ao analisarem o conceito de lista, Tenenbaum, Langsam e
Augenstein (1995) concluem que ela é composta por um endereço
que faz a ligação para o próximo item, possibilitando seu acesso de
forma randômica e a realização de operações, tais como, inclusão ou

U3 - Estrutura de Dados80

exclusão. As listas podem ser lineares ou encadeadas.

a.	� Listas lineares: os elementos estão organizados de forma
sequencial, embora isso não signifique estarem numa
sequência física. Exemplo: você vai ao dentista, enquanto
aguarda, existem várias pessoas na sala, porém, suas posições
de cadeiras não estão na sequência. Assim, cada item da lista
é conhecido como nó ou nodo. Dentre os exemplos de listas
lineares, Tenenbaum, Langsam e Augenstein (1995) citam as
pilhas e filas, cujos temas serão tratados nos próximos tópicos.

b.	� Listas encadeadas: os itens não possuem uma ordem
sequencial na memória. A fim de manter-se sequencialmente
lógica, podem ser codificadas de duas maneiras: simplesmente
encadeada e duplamente encadeada (TENENBAUM;
LANGSAM; AUGENSTEIN, 1995).

- Simplesmente encadeada: cada item tem um espaço para
armazenar informação e a referência da localização na memória,
considerando o item seguinte da lista;

- Duplamente encadeada: cada item possui um espaço para
armazenar informação e a referência da localização na memória,
considerando o item anterior da lista.

Pilha

De acordo com Tenenbaum, Langsam e Augenstein (1995), pilha é
um dos conceitos mais úteis, desempenhando um papel proeminente
nas áreas de programação e suas linguagens. Seu conceito é descrito
como um conjunto ordenado de itens, no qual novos itens podem
ser inseridos e, a partir do qual, eles podem ser eliminados em uma
extremidade chamada topo da pilha.

Ao analisar o contexto no qual o conceito de pilha é aplicado,
identificamos: edição de textos, processo para navegação entre
browsers, funções que requerem recursividade etc. Para implementar
os conceitos de pilha, podem ser usados vetores ou listas encadeadas.

A principal característica de uma pilha é que a última informação
a entrar é a primeira informação a sair, conhecida pela sigla LIFO
(do inglês, last in first out). Sua estrutura é composta pelos seguintes
métodos: push (empilhar informação), pop (desempilhar informação),
size (retornar o tamanho total da pilha), stackpop (retornar maior
elemento sem que seja removido) e empty (verificação se a pilha

U3 - Estrutura de Dados 81

está vazia). Observe a Figura 1.3, nela, exemplificamos a entrada de
informação, como são posicionadas em um vetor e, depois, quando
uma informação foi desempilhada, qual foi o posicionamento do topo
e qual informação saiu do vetor.

Fonte: elaborada pelo autor.

Figura 1.3 | Exemplo de pilha

A implementação de uma pilha pode ocorrer de duas formas: por
meio de vetor ou ponteiros.

Implementação por vetor

De acordo com Tenenbaum, Langsam, Augenstein (1995), a
implementação de uma pilha por meio de um vetor envolve a
declaração de dois objetos, um vetor para armazenamento dos itens
da pilha e um inteiro, indicando a atual posição do topo no vetor. Em
seguida, podem ser aplicados os métodos/as funções de pilha e outras
condições que forem necessárias. Observe a sintaxe do algoritmo
abaixo (IME, [s.d.]).

U3 - Estrutura de Dados82

Fonte: IME (s.d.).

Figura 1.4 | Algoritmo de pilha

Implementação por Ponteiros

Para a implementação de pilha usando ponteiros, Bertol (s.d.) cita o
seguinte exemplo de algoritmo e detalha seus comentários no código:

U3 - Estrutura de Dados 83

Figura 1.5 | Algoritmo de pilha por ponteiro

U3 - Estrutura de Dados84

Fonte: Bertol (s.d.).

Fila

A fila representa um conjunto com itens ordenados; a partir desse
conjunto é possível executar a eliminação dos itens que estão em

U3 - Estrutura de Dados 85

uma das extremidades (início da fila), e são adicionados ou deletados
seguindo o conceito de que o primeiro que entra é o primeiro que sai
(do inglês, FIFO – first in, first out, traduzido para o português como o
primeiro que entra é o primeiro que sai). Esse conceito não é apenas
aplicável à área de desenvolvimento de sistemas, preste atenção no
seu dia a dia, as filas estão presentes no supermercado, nas instituições
bancárias ou na hora de pagar a pipoca no cinema. Em um sistema,
podemos ter esse conceito aplicado para mensagens trocadas em
uma rede, controlar fila de impressão de documentos etc.

Os métodos básicos usados para a fila são: insert (inserir novos itens
em uma fila - no final), remove (excluir o item da fila – no início), empty
(verificação se a fila está vazia), size (retornar o tamanho da fila) e front
(retornar o item na sequência, sem que seja retirado).

A implementação de uma fila pode ocorrer de duas formas: por
meio de vetor ou ponteiros.

Implementação por vetor

Para implementar uma fila por vetor, estruture a fila com o número
de itens (n), um vetor para armazenamento dos itens e um inteiro para
determinar a posição atual do vetor que armazena o primeiro item da
fila. No exemplo citado a seguir, podemos ver o algoritmo de cálculo de
distância entre cidades, identificando a fila ordenada de interligações:

U3 - Estrutura de Dados86

Fonte: IME (s.d.).

Figura 1.6 | Algoritmo de fila por vetor

Implementação por Ponteiro

Mesmo com a possibilidade de implementação da fila por meio de
vetores, a utilização de ponteiros, para torná-la dinâmica, torna-se uma
boa prática, visto que ela pode se expandir. Esse exemplo mostra uma
fila que retorna os números reais:

U3 - Estrutura de Dados 87

Figura 1.7 | Algoritmo de fila por ponteiro

U3 - Estrutura de Dados88

U3 - Estrutura de Dados 89

Fonte: UFRJ (s.d.).

Questão para reflexão

Pesquise sobre o desempenho de filas, pilhas e listas; identifique qual
delas tem melhor desempenho em uma aplicação e compartilhe com
seu professor.

Para saber mais

Disponibilizaremos alguns materiais que complementarão o estudo dos
temas desta unidade.

Links

UNICAMP. Apostilas. Disponível em: <http://www.ic.unicamp.
br/~ra069320/PED/MC102/1s2008/Apostilas/>. Acesso em: 13 ago.
2017.

UFMG. Estrutura de dados básica. Disponível em: < http://homepages.
dcc.ufmg.br/~cunha/teaching/20121/aeds2/lists.pdf>. Acesso em: 14
ago. 2017.

U3 - Estrutura de Dados90

Livros

ZIVIANI, N. Projeto de Algoritmos. 2. ed., Editora Thomson.

SEDGEWICK, R. Algorithms in C. 3. ed., Editora Addison-Wesley, 2008.

Atividades de aprendizagem

1. Em relação aos conceitos relacionados às listas, analise as opções abaixo:
I - ____ pode-se concluir que ela é composta por um endereço que faz a
ligação para o próximo item, possibilitando seu acesso de forma randômica
e a realização de operações, tais como inclusão ou exclusão.
II -____. Seu conceito é descrito como um conjunto ordenado de itens no
qual novos itens podem ser inseridos.
Marque a alternativa que preenche, respectivamente, as lacunas:
a) Lista e Pilha.
b) Lista e Fila.
c) Fila e Pilha.
d) Fila e Lista.
e) Malloc e Free.

2. Em relação aos conceitos relacionados às listas, analise as opções abaixo:
I - ____ pode-se concluir que ela é composta por um endereço que faz a
ligação para o próximo item, possibilitando seu acesso de forma randômica
e a realização de operações, tais como, inclusão ou exclusão.
II -____. Seu conceito é descrito como um conjunto ordenado de itens no
qual novos itens podem ser inseridos.
Marque a alternativa que preenche, respectivamente, as lacunas:
a) Lista e Pilha.
b) Lista e Fila.
c) Fila e Pilha.
d) Fila e Lista.
e) Malloc e Free.

3. Analise as afirmativas:
I – Na Pilha é possível retirar o item que está na última posição.
II – Na Fila é possível ter um item que está na última posição e será o primeiro
a sair.

U3 - Estrutura de Dados 91

Assinale a alternativa que apresenta a resposta correta:
a) I está correta.
b) II está correta.
c) I e II estão corretas.
d) I e II estão incorretas.
e) I está correta e II está incorreta.

4. Analisando as características relacionadas à fila, assinale a opção que não
representa um dos métodos básicos usados por ela:
a) insert.
b) remove.
c) size.
d) time.
e) while.

5. Analise a descrição: sua estrutura é composta pelos seguintes métodos:
push, pop, size, stackpop e empty. Essa descrição está relacionada à:
a) Implementação por vetor de uma lista.
b) Fila.
c) Pilha.
d) Lista.
e) Classes.

Fique ligado

Nesta seção, compartilhamos os conceitos sobre fila, pilha e lista,
mostrando a importância da organização, manipulação e localização
de uma informação em específico e percebendo que esses conceitos
são amplamente difundidos na área de desenvolvimento de aplicações.

U3 - Estrutura de Dados92

Seção 3

Algoritmos de pesquisa
Introdução à seção

A presente seção tem como objetivo apresentar os algoritmos de
pesquisa para busca de uma determinada informação, seja em um
vetor ou uma matriz. O raciocínio para elaboração de um algoritmo
de busca é baseado na comparação entre o elemento a ser procurado
e cada um dos elementos que pertencem ao vetor ou matriz. Essa
comparação é executada até que o elemento em questão seja
encontrado ou que, após uma varredura completa, seja identificado
que ele não pertence ao conjunto pesquisado.

Para Tenenbaum, Langsam, Augenstein (1995), o algoritmo de
busca deve aceitar um argumento e buscá-lo em um conjunto de
elementos. O retorno do elemento pode ser inteiro ou ponteiro, uma
vez que tenha sido encontrado ou não.

Dentre os fatores que influenciam o desempenho de uma pesquisa,
podemos citar a forma com que os elementos estão organizados:
ordenados ou desordenados. No primeiro caso, existe a necessidade
de verificação do primeiro ao último elemento do vetor ou matriz.
No segundo caso, ao compararmos o elemento buscado com um
elemento do vetor ou matriz e o identificarmos como maior ou menor,
pode-se chegar a uma conclusão sobre sua inexistência.

Assim, considerando que a atividade de pesquisa de dados é uma
atividade habitual e que exige algoritmos eficientes em desempenho, nos
tópicos a seguir, apresentaremos os seguintes métodos de pesquisas:
pesquisa sequencial, pesquisa binária e pesquisa interpolação.

a. Pesquisa sequencial

Para Tenenbaum, Langsam, Augenstein (1995), a pesquisa sequencial
ou pesquisa linear é considerada o método mais simples de pesquisa, a qual
pode ser descrita como análise de todos os elementos do vetor de forma
sistemática. Essa análise inicia no primeiro elemento do vetor e prossegue para
os seguintes até que encontre o elemento procurado ou até finalizar o conjunto
de elementos. Considerando essa característica, a pesquisa sequencial é um
método demorado e dependente do tamanho total do vetor.

U3 - Estrutura de Dados 93

Para entender qual é o comportamento de uma pesquisa sequencial,
analise o algoritmo demonstrado na Figura 1.8:

Fonte: elaborada pelo autor.

Figura 1.8 | Exemplo algoritmo pesquisa sequencial

Após uma análise, existem quantos loops comparativos, entre
X e os elementos pertencentes ao vetor? Podemos concluir que
existirão n comparações. Se o tamanho do vetor for 10, por exemplo,
a quantidade de loops de comparação Serão multiplicada por 10 e o
tempo despendido para a pesquisa levará em consideração o número
de comparações realizadas.

Dentre suas vantagens, podemos citar: forma mais simples de busca,
melhor eficiência para quantidade pequena e média de informações e
todos os elementos do conjunto podem ser pesquisados. Em relação
às desvantagens, estão: a tabela precisa estar ordenada, existe espaço
adicional para armazenamento de índices de pesquisa e baixa eficiência
para grande volume de dados.

b. Pesquisa binária

Considerando a necessidade de aceleração dos métodos de
pesquisa, uma estratégia a ser utilizada é o particionamento de forma
sucessiva do conjunto de valores do vetor, a fim de reduzir a quantidade
de elementos a serem analisados. No entanto, esse é um método de
pesquisa que apenas funcionará se o conjunto de elementos estiver
ordenado.

Vamos ao seguinte exemplo: você está pesquisando o elemento
5 em um dado conjunto de valores; esse conjunto de valores é igual
a 1,2,3,4,5,6,7. A pesquisa binária irá analisar o elemento que está
no meio do conjunto, no vetor citado, o valor 4. Ao comparar o
elemento pesquisado com o elemento de valor médio, é verificado

U3 - Estrutura de Dados94

que o elemento pesquisado 5 é maior do que o elemento médio, a
pesquisa continuará na segunda metade do vetor e a primeira metade
é descartada. Agora, na segunda metade do vetor (5,6 e 7), o elemento
médio é o 6, que é maior que 5, então 6 e 7 são descartados. Assim, o
elemento é encontrado.

Observe o algoritmo da Figura 1.9. Neste algoritmo, a proposta foi a
busca por um determinado elemento X que percorre o vetor e retorna
-1, pelo fato do elemento não ser encontrado.

Fonte: IME (s.d.).

Figura 1.9 | Exemplo de algoritmo pesquisa binária

c. Pesquisa interpolação

De acordo com Tenenbaum, Langsam, Augenstein (1995), a pesquisa
por interpolação é outro método a ser aplicado em um vetor ordenado,
tornando-se uma variante melhorada da pesquisa binária. Inicialmente,
low é definido com 0 e high torna-se n-1, e, no algoritmo, a chave de
argumento key será reconhecida por estar entre low e high. Considerando
que as chaves estão uniformemente distribuídas entre esse intervalo de
valores, esperamos que a key esteja em posição aproximada: mid = low
+(high - low) * ({key - k(low))/k(high) - k(low))) (TENENBAUM, 1995).

Ao aplicar a fórmula de aproximação, se a key< mid, é necessário
redefinir high como mid-1, caso contrário, faça a redefinição de
low como mid+1. Esse processo é necessário até que a chave seja
encontrada ou que low> high (TENENBAUM, 1995).

É importante ressaltar que a busca por interpolação é lenta, pois
envolve cálculos aritméticos sobre as chaves, além de complexas
multiplicações e divisões, tornando-a mais vagarosa que a busca binária,
mesmo que o processo de comparações seja com menos iterações

U3 - Estrutura de Dados 95

(TENENBAUM, LANGSAM, AUGENSTEIN, 1995). A representação dessa
busca em forma de algoritmo segue na Figura 1.10, logo abaixo:

Fonte: UNICAMP (s.d.).

Figura 1.10 | Exemplo algoritmo pesquisa por interpolação

Questão para reflexão

Analise o seguinte cenário: Carlos é gerente de projeto em uma grande
empresa de construção civil e está responsável por gerenciar a execução
do mais novo projeto de casas de condomínios fechados na sua cidade.
A empresa possui um sistema que gerencia todo o ciclo de vida dos
projetos e todas as informações pertinentes. Analise opções de como
os algoritmos de pesquisa podem ser utilizados no sistema de gestão de
projetos usado pelo Carlos. Compartilhe sua opinião com o professor.

Dica: <http://pmbook.ce.cmu.edu/10_Fundamental_Scheduling_Procedures.

html> (Acesso em: 28 de jul. 2017).

Para saber mais

Complementaremos seu material de estudo com alguns links sobre
algoritmos.

Links

ALGOSORT. Computer Programming Algorithms Directory.

Disponível em: <http://www.algosort.com/>. Acesso em: 28 jul. 2017.

U3 - Estrutura de Dados96

PRINCETON. Algorithms. Disponível em: <http://algs4.cs.princeton.

edu/lectures/13StacksAndQueues.pdf>. Acesso em: 28 jul. 2017.

MIT. Introduction to Algorithms (SMA 5503). Disponível em:

<https://ocw.mit.edu/courses/electrical-engineering-and-computer-

science/6-046j-introduction-to-algorithms-sma-5503-fall-2005/>.

Acesso em: 28 jul. 2017.

ZUNNY. Using the "bestfast" search algorithm and "profile" tables.

Disponível em: <http://zunny.com/RUBIK.HTM>. Acesso em: 28 jul.

2017.

Atividades de aprendizagem

1. Analise a sequência de números apresentados no vetor representado
abaixo:

Utilizando um algoritmo de pesquisa binária, quantos loops serão necessários
até que o elemento 45 seja encontrado?
a) 8.
b) 5.
c) 3.
d) 2.
e) 1.

2. Esse método utiliza um vetor ordenado e realiza particionamento do
espaço de busca, realizando a comparação do elemento a ser localizado
com o elemento no meio do vetor. Caso o elemento a ser localizado seja
igual ao elemento do meio, a pesquisa é encerrada. Senão, a pesquisa
continua o particionamento, até o que o elemento seja localizado ou todos
os elementos sejam pesquisados e a busca encerrada. Baseando-se nessa
descrição, de qual método estamos falando?
a) Pesquisa sequencial.
b) Pesquisa binária.

U3 - Estrutura de Dados 97

c) Pesquisa sequencial recursiva.
d) A descrição não está relacionada a nenhum tipo de pesquisa.
e) A descrição pode ser usada para todos os tipos de pesquisa.

3. João é um professor de Lógica e citou a seguinte frase: Para resolver um
problema, precisamos dividi-lo em pequenas partes menores; a partir dessa
divisão, podemos ver que ele ficará mais simples.
Ao fazer uma analogia com os métodos de pesquisa, estamos nos referindo
à:
a) Pesquisa sequencial.
b) Pesquisa binária.
c) Pesquisa por interpolação.
d) Nenhuma das alternativas anteriores.

4. Analise a seguinte imagem:

Utilizando a representação gráfica da figura, verifique quantas iterações
serão necessárias até encontrar o valor 8 no vetor:

U3 - Estrutura de Dados98

a) 5.
b) 8.
c) 2.
d) 3.
e) 5.

5. Analise as opções a seguir:
I – Pesquisa sequencial: existem cálculos aritméticos para localizar o valor
buscado.
II – Pesquisa binária: se o vetor contém 8 posições e o valor buscado está
na 8ª posição, consequentemente, o total de verificações sequenciais será
igual a 8.
É correto afirmar que:
a) I está correta e II está incorreta.
b) I e II estão corretas.
c) I está incorreta e II está correta.
d) I e II estão incorretas.

Fique ligado

A pesquisa de dados é a base fundamental na área de
desenvolvimento de software, garantindo que dados importantes
sejam recuperados para utilização no cotidiano das mais variadas
instituições públicas ou privadas. Dada essa importância, faz-se
necessária a projeção de algoritmos que sejam confiáveis e eficientes
no retorno de dados. Para tal, existem métodos de pesquisa; abaixo
verifique as figuras que representam graficamente esses métodos.

e. Pesquisa sequencial:

U3 - Estrutura de Dados 99

Fonte: elaborada pelo autor.

Figura 1.11 | Representação gráfica - pesquisa sequencial

Legenda:

i = posição do vetor

n = tamanho do vetor

x= elemento a ser localizado no vetor

f. Pesquisa binária:

U3 - Estrutura de Dados100

Fonte: elaborada pelo autor.

Figura 1.12 | Representação gráfica - pesquisa binária

g. Pesquisa por interpolação:

Fonte: elaborada pelo autor.

Figura 1.13 | Representação gráfica - pesquisa por interpolação

U3 - Estrutura de Dados 101

Seção 4

Classificação
Introdução à seção

Ao citar o conceito de um determinado conjunto ordenado é
perceptível que ele tem um impacto na nossa rotina. Pense na seguinte
cena: você vai até a biblioteca da nossa instituição para realizar um
empréstimo de um livro de estrutura de dados. Ao chegar lá, verifica
que existem muitas prateleiras, mas, como todos os livros fazem parte
de um catálogo, todos estão em suas posições específicas, logo, você
realizará a consulta da posição do livro buscado e será direcionado
à prateleira correta. Assim, como no nosso exemplo, de forma geral,
um determinado conjunto de itens recebe uma classificação para
produção de relatórios ou para que o procedimento de acesso aos
dados seja mais eficiente.

Podemos dividir a classificação em dois grupos: interna, quando
o conjunto de dados está contido na memória principal, e externa,
quando seu armazenamento não está na memória. Em relação aos
métodos de classificação interna, estão: inserção, troca, seleção,
intercalação e distribuição.

Classificação interna por bolha (bubble sort)

Provavelmente, é o tipo de classificação mais conhecido; uma
das suas principais características é a facilidade de entendimento e
programação; no entanto, é a menos eficiente, pois a ideia central
é percorrer o arquivo de forma sequencial diversas vezes; a cada
iteração, um item é comparado com o seu sucessor e trocados de
ordem, caso necessário. O algoritmo que representa esse método está
demonstrado na Figura 1.14:

U3 - Estrutura de Dados102

Fonte: Tenenbaum (1995).

Figura 1.14 | Exemplo de método bolha

Classificação interna por troca de partição (quicksort)

Este método consiste em um algoritmo que particiona o vetor e
permite que um valor específico seja alocado na posição correta. O
algoritmo que representa esse método é:

Fonte: TENENBAUM (1995).

Figura 1.15 - Exemplo de método quicksort

U3 - Estrutura de Dados 103

Classificação interna por seleção

Este método é aquele no qual sucessivos itens são selecionados
sequencialmente e organizados em suas posições de forma ordenada.
Consiste em trocar o menor item de uma determinada lista com o
elemento posicionado no início da lista, em seguida, o segundo menor
item com a segunda posição e assim sucessivamente com os (n - 1)
itens restantes. Observe nosso exemplo de método de seleção:

Fonte: Tenenbaum (1995).

Figura 1.16 | Exemplo de método seleção

Classificação interna por inserção

Uma ordenação por inserção refere-se à ordenação de um conjunto
de registros inserindo itens num arquivo ordenado já existente. Observe
o algoritmo a seguir.

Fonte: Tenenbaum (1995).

Figura 1.17 | Exemplo de método inserção

Classificações por intercalação

Este processo combina dois ou mais arquivos classificados num
terceiro arquivo classificado. Confira o exemplo na Figura 1.18:

U3 - Estrutura de Dados104

Fonte: Tenenbaum (1995).

Figura 1.18 | Exemplo de método intercalação

Questão para reflexão

Analise os métodos de classificação e descreva, na sua opinião, qual
dos métodos apresenta um melhor desempenho? Desenvolva sua
percepção e compartilhe no portal do aluno.

Para saber mais

Nesta seção apresentaremos alguns material complementar de apoio
aos seus estudos de Ordenação.

Links

<http://www.ufpa.br/sampaio/curso_de_estdados_2/jota_jota_
ordenacao/Intercalacao_de_arquivos.htm>

< h t t p s : / / w w w . r e s e a r c h g a t e . n e t / p r o f i l e / G f _ C i n t r a /
publication/279708678_Pesquisa_e_Ordenacao_de_Dados/
links/5597f0e908ae793d137dfa16.pdf>.

U3 - Estrutura de Dados 105

<http://www.lbd.dcc.ufmg.br/colecoes/sbac-pad/1987/0039.pdf>.

<https://books.google.com.br/books?hl=pt-BR&lr=&id=DjyTjonm01
sC&oi=fnd&pg=PA1&dq=Classifica%C3%A7%C3%B5es+por+intercal
a%C3%A7%C3%A3o+e+de+raiz&ots=uC8mI3NO86&sig=64YrwiXtSc
LMWgBeNUrSJz9ZEN4#v=onepage&q&f=false>.

Atividades de aprendizagem

1. Tipo de classificação mais conhecido, uma das suas principais
características é a facilidade de entendimento e programação; no entanto,
é a menos eficiente, pois a ideia centrar é percorrer o arquivo de forma
sequencial diversas vezes. Essa descrição está relacionada à qual método
de classificação:
a) Bolha.
b) Inserção.
c) Seleção.
d) Quicksort.
e) Fila.

2. O _____________ é um método que consiste em um algoritmo que
particiona o vetor e permite que um valor específico seja alocado na posição
correta. Marque a alternativa que preenche a lacuna:
a) Bolha.
b) Inserção.
c) Seleção.
d) Quicksort.
e) Lista.

3. O trecho do algoritmo abaixo refere-se à qual método de classificação?

U3 - Estrutura de Dados106

a) Inserção.
b) Bolha.
c) Seleção.
d) Quicksort.
e) Lista.

Fique ligado

Chegamos ao final da unidade, você percebeu que a estrutura
de dados apresenta inúmeros benefícios, tais como, organização da
informação, melhoria de desempenho, reutilização de códigos, dentre
outros. Pesquise e analise uma aplicabilidade da estrutura de dados na
área de Gestão de Projetos, identificando as principais características
dos métodos usados e de que forma apoia o planejamento e a
identificação de possíveis desvios na sua execução. Compartilhe o
resultado de sua análise com o professor!

Para concluir o estudo da unidade

Quando falamos em desenvolvimento de software, devemos
pensar nos métodos que serão utilizados para implementá-lo; assim, o
produto final deverá ter sua estrutura de dados arquitetada e, portanto,
seus dados organizados; custo reduzido, tanto para criação quanto
para manutenção; reutilização de códigos, além de proporcionar a
interoperabilidade e bom desempenho.

Atividades de aprendizagem da unidade

1. Abaixo, temos uma pilha, observe:

Fonte: elaborada pelo autor.

Sabemos que é uma pilha, pois a estrutura acima possui um único apontador
denominado TOPO.

U3 - Estrutura de Dados 107

Assim, na operação de inserção de pilha, analise a sequência de inserções
a seguir:

I. Inserir o elemento 33, topo ocupa posição zero.
II. Inserir o elemento 3, topo ocupa posição 1.
III. Inserir o elemento 100, topo ocupa posição 2.
IV. Inserir o elemento 22, topo ocupa posição 3.
Assinale a alternativa correta:
a) As alternativas I, II, III e IV estão corretas.
b) As alternativas I, III e IV estão corretas.
c) A alternativa I está correta e a alternativa II está errada.
d) A alternativa I está correta e a alternativa III está errada.
e) As alternativas I e II estão corretas e as alternativas III e IV estão erradas.

2. Um navegador, conhecido na informática por browser, é um programa
que nos permite acessar a internet; ou seja, permite que o usuário “navegue”
na rede mundial de computadores. Muitos desses sites possuem links para
outros sites, e é neste momento de navegação que, através do link, pode-se
abrir uma outra página, e a partir dessa página acessar outra.
Diante do exposto acima o Navegador trabalha com:
a) Uma estrutura de Lista Estática Linear com disciplina de FILA.
b) Uma estrutura de Lista Estática Linear com disciplina de PILHA.
c) Uma estrutura de Lista Encadeada com disciplina de FILA.
d) Uma estrutura de Lista Encadeada com disciplina de PILHA.
e) Uma estrutura de Lista Duplamente Encadeada com disciplina de PILHA.

3. Uma estrutura de Lista Estática Linear (PILHA) é semelhante a uma pilha de
pratos, pois cada prato a ser inserido na pilha será sobre o último elemento,
ou seja, no topo; e toda exclusão é executada a partir do topo também.
Então, suponha uma estrutura de Lista Estática Linear (FILA) que possua
cinco posições para elementos inteiros.
Execute a sequência de comandos do algoritmo e responda:
1º) InicializaPilha().
2º) VerificaPilhaVazia().
3º) VerificaPilhaCheia().
4º) Insere(21).
5º) Insere(41).
6º) Insere(101).
7º) Insere(90).
8º) VerificaPilhaCheia().

U3 - Estrutura de Dados108

Quais são os valores de cada posição, iniciando pelo índice 0, respeitando a
sequência do código acima?
a) 21-41-101-90.
b) 90-101-41-21.
c) 21-101-41-90.
d) 101-90-41-21.
e) 21-90-101-41.

4.

A imagem refere-se à operação de:
a) Inclusão de fila à esquerda.
b) Inclusão de fila à direita.
c) Inclusão de fila acima.
d) Inclusão de fila abaixo.
e) Exclusão de fila acima.

5. P1 é uma pilha com cinco posições, v(1) a v(5), na qual v(5) é o topo. De
v(1) até v(5), a pilha P1 está preenchida, respectivamente, com os símbolos
Q5, Q3, Q1, Q4, Q2. Há ainda mais duas pilhas, inicialmente vazias, P2 e P3,
com o mesmo tamanho.
Fonte: Tecnologia da Informação Algoritmos e Estrutura de Dados Estruturas
de dados Pilhas ANO: 2014 BANCA: CESGRANRIO ÓRGÃO: PETROBRAS
PROVA: TÉCNICO - TÉCNICO DE INFORMÁTICA (MODIFICADA)

U3 - Estrutura de Dados 109

Cheia

P1
Q2
Q4
Q1
Q3
Q5

Qual é a quantidade mínima de movimentos entre as três pilhas para
que a pilha P1, originalmente cheia, esteja preenchida de v(5) até v(1),
respectivamente, com os símbolos Q1, Q2, Q3, Q4, Q5?

Vazia Vazia Vazia

P1 P2 P3

a) 7.
b) 8.
c) 9.
d) 10.
e) 11.

U3 - Estrutura de Dados110

Referências
BATTISTI. Linguagem C – Alocação dinâmica. Disponível em: <https://juliobattisti.com.
br/tutoriais/katiaduarte/cbasico009.asp>. Acesso em: 13 ago. 2017.

BERTOL, O. F. Disponível em: <http://www.pb.utfpr.edu.br/omero/C/Exercicios/E/
PILHAAPO.Htm>. Acesso em: 13 ago. 2017.

IME. Busca em vetor ordenado. Disponível em: <https://www.ime.usp.br/~pf/algoritmos/
aulas/bubi2.html>. Acesso em: 2 ago. 2017.

IME2. Ponteiros, ponteiros e vetores e alocação dinâmica de memória. Disponível em:
<https://www.ime.usp.br/~mms/mac1222s2013/8%20-%20Ponteiros,%20%20ponteiros%20
e%20vetores%20e%20alocacao%20dinamica%20de%20memoria.pdf>. Acesso em: 13 ago.
2017.

LAUREANO, M. Estrutura de Dados com Algoritmos e C. Curitiba: Brasport, 2008.

SEDGEWICK, R. Algorithms in C. 3. ed. Addison Wesley Longman, 1998.

TENENBAUM, M. A; LANGSAM; Y. AUGENSTEIN, M. J. Estrutura de Dados Usando C. São
Paulo: Pearson, 1995.

UFRJ. Estrutura de Dados e Algoritmos. Disponível em: <http://www.cos.ufrj.br/~rfarias/
cos121/filas.html>. Acesso em: 13 ago. 2017.

UFSC. Curso C. Disponível em: <http://mtm.ufsc.br/~azeredo/cursoC/aulas/ca60.html>.
Acesso em: 13 ago. 2017.

UNICAMP. Alocação Dinâmica. Disponível em: <http://www.ic.unicamp.br/~norton/
disciplinas/mc1022s2005/03_11.html>. Acesso em: 13 ago. 2017.

UNICAP. Algoritmos e Estrutura de Dados II. Disponível em: <https://marciobueno.com/
arquivos/ensino/ed2/ED2_11_Pesquisa.pdf>. Acesso em: 2 ago. 2017.

Unidade 4

Árvores e grafos

Nesta unidade, você será levado a aprender sobre dois tipos de
estruturas de dados muito utilizados na área da computação. Para
tanto, os objetivos desta unidade são:

•	 Compreender o que são grafos e suas aplicações;

•	 Aprender sobre árvores e suas terminologias;

•	� Compreender as operações de inserção e exclusão de nós
em uma árvore;

•	 Conhecer os tipos de percursos em uma árvore;

•	 Aprender as formas de implementações de uma árvore.

Objetivos de aprendizagem

Nesta seção, você estudará sobre os principais conceitos relacionados aos

grafos e às árvores, assim como algumas aplicações desses tipos de estruturas

de dados. Esta seção também apresenta as principais terminologias relacionadas

a uma árvore e os tipos mais utilizados para a resolução de problemas na área

computacional.

Seção 1 | Introdução a grafos e árvores

Nesta seção, você vai aprender sobre o tipo mais utilizado de árvore, que é a

árvore binária de busca; exemplos de códigos para a implementação estática e

dinâmica; simulações das operações mais importantes para a manipulação dessas

árvores e, por fim, os tipos principais de percursos em uma árvore binária de busca,

exemplificando graficamente cada um deles.

Seção 2 | Árvore binária de busca

Gisele Alves Santana

Introdução à unidade
Os grafos representam um tipo de estrutura de dados muito comum

nas aplicações computacionais, especialmente na implementação de
jogos. Nesta unidade, serão apresentados alguns conceitos importantes
sobre esse tipo de estrutura, exemplificando matematicamente a
solução de alguns conceitos relacionados aos grafos, como o cálculo
do número de vértices e arcos de um grafo.

Outro tipo muito comum de estrutura de dados aplicado na
computação são as árvores, especialmente as árvores binárias de
busca. Uma árvore pode ser considerada binária se todos os nós à
esquerda do nó raiz forem menores que o nó raiz, assim como se
todos os nós à direita do nó raiz forem maiores que o mesmo.

Nesta unidade, serão apresentadas duas maneiras de implementação
de uma árvore binária de busca, porém, a implementação dinâmica é
mais utilizada. Também serão apresentados exemplos e simulações
envolvendo as operações mais importantes relacionadas a esse
tipo de árvore, assim como trechos de código na Linguagem C que
implementam essas operações para a manipulação dessas estruturas
de dados.

Para finalizar, será definido o conceito de percurso ou travessia de
uma árvore binária de busca, apresentando e ilustrando quatro tipos
de percursos. Funções recursivas que implementam os percursos de
árvores binárias também serão exemplificadas.

U4 - Árvores e grafos114

Seção 1
Introdução a grafos e árvores
Introdução à seção

Esta seção apresenta e ilustra os principais conceitos relacionados
aos grafos e às árvores. Os grafos são muito utilizados em aplicações
computacionais, especialmente na implementação de jogos. Já as
árvores são utilizadas para a organização de dados, principalmente
para proporcionar agilidade e rapidez na busca de uma informação.

4.1 Grafos

Como já foi visto na Unidade 1, as estruturas de dados auxiliam
na organização das informações, de modo a serem registradas e
processadas pelo computador. Alguns exemplos de estruturas de
dados são:

•	 Listas lineares.

•	 Vetores.

•	 Árvores.

•	 Grafos.

•	 Etc.

Um grafo, ou também chamado de dígrafo, é um conjunto de
vértices e arestas (arcos) que interligam pares de vértices distintos
TENEMBAUM; LANGSAM; AUGENSTEIN, 2004). Cada aresta de um
grafo é um par ordenado de vértices. O primeiro vértice é a ponta
inicial da aresta e o segundo é a ponta final. Uma aresta com a ponta
inicial “a” e a ponta final “b” é denotado por: a-b, que diz que o arco a-b
sai de a e entra em b.

Diversos tipos de aplicações necessitam das estruturas dos grafos.
Por exemplo: quando se tem a necessidade de saber se existe um
caminho para ir de um objeto a outro, ou calcular a menor distância
entre os objetos, ou até mesmo calcular quantos objetos podem ser
alcançados a partir de outro objeto.

As árvores são consideradas como subconjunto dos grafos, pois
nessas estruturas existe um único caminho que leva a qualquer nó, ou
seja, não há possibilidade de se voltar a um nó já visitado a partir de seus
filhos (não possui ciclos).

U4 - Árvores e grafos 115

Os grafos são ferramentas muito utilizadas em jogos. Essas estruturas
podem ser usadas, por exemplo, para permitir que um personagem
caminhe de um ponto a outro de modo eficiente, ou para decidir a
próxima estratégia em um jogo, ou até mesmo para resolver um puzzle.
Os grafos são comumente aplicados para representar o conjunto de
caminhos que um personagem pode navegar no ambiente de um
jogo.

Na Figura 4.1, são apresentados vários exemplos de grafos. Os grafos
podem ser conexos (a, b, c e d) ou não conexos (e, f). Um grafo é dito
conexo quando se pode traçar um caminho que parte de qualquer nó
e chega a qualquer outro (TENENBAUM et al., 2004). Um grafo é dito
completo quando há uma aresta entre cada par de seus vértices. Se as
arestas do grafo são orientadas, o grafo é chamado de orientado.

Fonte: adaptada de Tenembaum, Langsam e Augenstein (2004).

Figura 4.1 | Exemplos de Grafos

Para saber mais

Neste vídeo, é ilustrada a implementação do algoritmo de Dijkstra, que
representa outro tipo de método de busca em grafos. Disponível em:
<https://www.youtube.com/watch?v=mdWI0WM4EDU>. Acesso em:
16 nov. 2016.

U4 - Árvores e grafos116

4.1.1 Notação Formal

Um grafo G pode ser formalmente definido como um conjunto de
nós ou vértices V interligados por um conjunto de arestas A. Pode-se
escrever formalmente da seguinte maneira:

G = {V, A}
"Muitos grafos possuem pesos associados às arestas. Esse peso

pode representar o custo necessário para se mover de um ponto a
outro em um grafo. Esse custo pode ser dado em função da distância
entre os vértices ou pela dificuldade de locomoção" (TENEMBAUM;
LANGSAM; AUGENSTEIN, 2004, p. 684).

4.1.2 Arcos

Para especificar um grafo, geralmente exibe-se o conjunto de seus
arcos. Por exemplo, o conjunto de arcos a seguir define um gráfico
com o conjunto de vértices de 0 até 11: 0-5 0-6 2-0 2-3 3-6 3-10 4-1
5-2 5-10 6-2 7-8 7-11 8-1 8-4 10-3 11-8.

A ilustração desse grafo pode ser observada na Figura 4.2.

Fonte: adaptada de Tenembaum, Langsam e Augenstein (2004)

Figura 4.2 | Grafo e seus arcos

O número de arcos de um grafo é dado pela equação:

Onde: N-1 representa todos os vértices, excluindo ele mesmo, e a
divisão por 2 significa duas arestas iguais (ida e volta).

Na Figura 4.3 são apresentados exemplos de grafos com 1, 2 e 6 arcos.

U4 - Árvores e grafos 117

Fonte: elaborada pela autora.

Figura 4.3 | Arcos e vértices

"Um grafo será chamado de completo se todo par ordenado de
vértices distintos for um arco. Quando um grafo tem muitos arcos
em relação ao seu número, ele é chamado de denso" (TENEMBAUM;
LANGSAM; AUGENSTEIN, 2004, p. 698). Por outro lado, se o grafo
possui poucos arcos, é chamado de esparso. A razão entre os vértices
e os nós caracteriza se o grafo é denso ou esparso. Grafos esparsos
têm poucas conexões por nó e grafos densos possuem muitas. Na
Figura 4.4 são apresentados exemplos de grafos denso e esparso.

Fonte: adaptada de Tenembaum, Langsam e Augenstein (2004).

Figura 4.4 | Exemplo de grafo denso e esparso

4.1.3 Tipos de Grafos

"Existem, basicamente, dois tipos de grafos: grafo não direcional
e grafo direcional" (TENEMBAUM; LANGSAM; AUGENSTEIN, 2004,
p. 702). Nos grafos não direcionais, as arestas não são direcionadas
ou ordenadas, ou seja, a aresta “V1, V2” é a mesma aresta “V2, V1”,
conforme ilustrado na Figura 4.5.

U4 - Árvores e grafos118

Fonte: elaborada pela autora.

Figura 4.5 | Grafo não direcional

Os grafos direcionais são também chamados de dígrafos. Nesses
grafos, as arestas são direcionadas ou ordenadas, ou seja, a aresta “V1,
V2” é diferente da aresta “V2, V1”. A Figura 4.6 apresenta um exemplo
de grafo direcional.

Fonte: elaborada pela autora.

Figura 4.6 | Grafo direcional

4.1.4 Grau de um Vértice

"O grau é o número de arcos que incidem sobre um vértice. Nos grafos
não direcionados, o grau corresponde ao número de arcos que incidem
sobre o vértice" (TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 705).

Já nos grafos direcionados, o grau é o número de arestas que saem
dele mais o número de arestas que incidem sobre ele. Um vértice é dito
isolado quando seu grau é zero. Na Figura 4.7, o grau do vértice A é igual a
zero, pois não existem arestas saindo ou entrando nele.
Figura 4.7 | Graus de um vértice

Fonte: elaborada pela autora.

U4 - Árvores e grafos 119

4.1.5 Ciclo

"E um grafo não direcionado, um caminho (v0, v1, ..., v
n
) forma

um ciclo se v0 = v
n
 e o caminho contém, pelo menos, três arestas"

TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 700).

Em um grafo direcionado, um caminho (v0, v1, ..., v
n
) forma um

ciclo se v0 = v
n
 e o caminho contém, pelo menos, uma aresta. Os

grafos que não possuem ciclos são chamados de acíclicos, já os grafos
que possuem ciclos são chamados de cíclicos (MIZRAHI, 2006, p. 121).

O self-loop é um ciclo de tamanho igual a 1. Na Figura 4.8, analisando
o ciclo “B C D”, percebe-se que os caminhos “B C D”, “C D B” e “D B C”
formam o mesmo ciclo.

Fonte: elaborada pela autora.

Figura 4.8 | Ciclos de um grafo

Analisando o ciclo “A D C B A” da Figura 4.9, percebe-se que existe
um Self-loop no vértice “C”, sendo que os caminhos “A D B A”, “D B A
D” e “B A D B” formam o mesmo ciclo.

Fonte: elaborada pela autora.

Figura 4.9 | Self-loop

4.1.6 Componentes Conectados

Um grafo não direcionado é conectado quando cada par de vértices
está conectado por um caminho. Os componentes conectados são
as porções conectadas de um grafo. Um grafo não direcionado é

U4 - Árvores e grafos120

conectado se ele tem exatamente um componente conectado. Na
Figura 4.10, o grafo não é conectado, pois não é possível alcançar
o vértice A a partir dos vértices B, C ou D. O grafo {C D B} é um
componente conectado do grafo. Inserindo-se o arco {A B}, o grafo
passa a ser conectado.

Fonte: elaborada pela autora.

Figura 4.10 | Componentes conectados

4.1.7 Pontos de Articulação

Os pontos de articulação são vértices que, se forem removidos
do grafo, produzirão pelo menos dois componentes conectados.
Na Figura 4.11, se o vértice “5” for retirado do grafo, produzirá dois
componentes conectados: (1 2 4 3) e (6 7 8 9).

Fonte: elaborada pela autora.

Figura 4.11 | Pontos de articulação

Quando os grafos não possuem nenhum ponto de articulação, são
chamados de grafos biconectados.

U4 - Árvores e grafos 121

4.1.8 Caminho e Comprimento

"Um caminho de um vértice a para um vértice b em um grafo G =
(V;E) é uma sequência de vértices" (v

0
, v

1
, v

2
, ..., v

n
) tal que: a = a

0
 e b =

b
n
 (TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 701).

O comprimento de um caminho é o número de arestas percorridas
por esse caminho. Se existir um caminho c de a para b, então b
é alcançável a partir de a via c. Um caminho é simples se todos os
vértices do caminho forem distintos. A origem de um caminho é o
primeiro vértice, já o término é o seu último vértice. Um caminho é
fechado se sua origem coincide com seu término e seu comprimento
é maior que 1.

Na Figura 4.12, tem-se um caminho simples. O caminho (C B D)
tem comprimento igual a 2 e a aresta D é alcançável a partir de C. Já a
aresta A não é alcançável a partir de nenhum vértice.

Fonte: elaborada pela autora.

Fonte: adaptada de Tanembaum, Langsam e Augenstein (2004).

Figura 4.12 | Caminhos de um grafo

Figura 4.13 | Caminhos e comprimento

O comprimento de um caminho é o número de termos da
sequência de vértices menos um. O comprimento de um caminho
como “4-7-5-7-5-7”, por exemplo, é igual a 5. Se o caminho é
simples, seu comprimento é igual ao seu número de arcos. Observe
o grafo apresentado na Figura 4.13, que possui diversos caminhos, por
exemplo: 0-2-7-3-6; 1-3-6-2-7-3-6-4; 2-7-5-4-7-3 etc.

U4 - Árvores e grafos122

Para saber mais

A apostila a seguir ilustra as operações mais utilizadas para a manipulação
de grafos e implementação de algoritmos de busca. Disponível em:
<http://www.dainf.ct.utfpr.edu.br/~kaestner/MatematicaDiscreta/
Conteudo/Algoritmos/l13-graph-search.pdf>. Acesso em: 19 set. 2017.

4.2 Árvores

"Uma árvore é um tipo de estrutura de dados no qual os dados
ficam dispostos de maneira hierárquica. Pode-se dizer que árvores são
grafos nos quais existe apenas uma origem e não se pode formar ciclos"
(TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 303). Existem vários
tipos de árvores, definidos a partir da quantidade de “filhos” que um
elemento ou nó pode ter e de como os elementos são arranjados dentro
da árvore. Na computação, as árvores são utilizadas em várias situações,
como: estruturas de diretórios em SO, índices para arquivos em disco,
estrutura de um arquivo HTML, árvore de decisão em jogos etc. Na Figura
4.14 pode ser observada a estrutura do diretório do Disco Local C.

Fonte: elaborada pela autora.

Figura 4.14 | Estrutura dos arquivos do diretório C

A estrutura dos arquivos do diretório C pode ser representada,
internamente, por meio de uma árvore, conforme ilustrado na Figura
4.15.

U4 - Árvores e grafos 123

Fonte: elaborada pela autora.

Figura 4.15 | Representação da estrutura dos arquivos do diretório C

Uma árvore é formada por um elemento principal, denominado
raiz. A raiz possui ligações com outros elementos, chamados de
filhos ou ramos. "Os ramos são ligados a outros elementos que, por
sua vez, também possuem outros ramos" (TENEMBAUM; LANGSAM;
AUGENSTEIN, 2004, p. 304). O elemento de uma árvore que não
possui ramos é conhecido como nó, folha ou nó terminal. As árvores
possuem a tendência de crescer para baixo: a raiz fica no ar enquanto
as folhas se enterram no chão. Na Figura 4.16 é apresentado um
exemplo de árvore e seus respectivos elementos.

Fonte: elaborada pela autora.

Figura 4.16 | Árvore e seus elementos

U4 - Árvores e grafos124

A seguir serão apresentadas as terminologias utilizadas para designar
os elementos de uma árvore:

•	 Subárvore: cada nó da árvore é a raiz de uma subárvore.

•	 Grau: representa o número de subárvores de um nó.

•	� Folha: é o nó de grau igual a zero, ou seja, o nó que não possui
filhos.

•	� Nível: a raiz da árvore tem nível 0 (zero) e o nível de qualquer
outro nó na árvore é um nível a mais que o nível de seu pai.

•	� Altura (profundidade): é definida como sendo o nível mais alto
da árvore.

Na Figura 4.17 são exemplificadas algumas terminologias de uma
árvore que possui altura igual a 3, correspondendo ao seu nível mais
alto.

Fonte: elaborada pela autora.

Figura 4.17 | Terminologias de uma árvore

Questão para reflexão

Você consegue citar as vantagens da implementação de árvores para a
organização de dados?

4.2.1 Formas de Representação Gráfica

Existem diversas formas para a representação gráfica de uma árvore.
A maneira mais utilizada é a representação por meio de grafos, ilustrada
na Figura 4.18.

U4 - Árvores e grafos 125

Fonte: elaborada pela autora.

Figura 4.18 | Representação por grafos

Outra maneira de se representar uma árvore é por meio de um
diagrama de Venn, conforme ilustrado na Figura 4.19.

Fonte: elaborada pela autora.

Fonte: elaborada pela autora.

Figura 4.19 | Representação por diagrama de Venn

Figura 4.20 | Representação por parênteses aninhados

Uma árvore também pode ser representada por meio de parênteses
aninhados, de acordo com a Figura 4.20.

4.3 Árvore Binária

Na estrutura de dados, existem diversos tipos de árvores, por exemplo:
árvore rubro-negra, AVLS, binária etc. Nesta seção, serão estudadas as
árvores binárias, "em que cada nó pode ter no máximo duas subárvores"

U4 - Árvores e grafos126

(TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 303). Dessa forma,
o grau de cada nó pode ser 0, 1 ou 2. Em relação às denominações
utilizadas para as subárvores de uma árvore binária, pode-se citar:

•	 Subárvore esquerda (E);

•	 Subárvore direita (D).

As árvores binárias se subdividem em alguns tipos, cujas
características serão apresentadas a seguir.

4.3.1 Árvore Estritamente Binária

Neste tipo de árvore binária, cada nó tem 0 (zero) ou 2 subárvores,
ou seja, nenhum nó tem “filho único”. A Figura 4.21 ilustra uma árvore
estritamente binária.

Fonte: elaborada pela autora.

Figura 4.21 | Árvore estritamente binária

4.3.2. Árvore Binária Cheia

Nas árvores binárias cheias, todos os nós, exceto os nós do último
nível, têm exatamente duas subárvores, conforme ilustrado na Figura
4.22.

Fonte: elaborada pela autora.

Figura 4.22 | Árvore estritamente binária

U4 - Árvores e grafos 127

4.3.3 Árvore Binária Balanceada (AVL)

Uma árvore binária é considerada balanceada quando, para cada nó,
as alturas de suas subárvores esquerda e direita diferem de, no máximo,
uma unidade. Essa diferença é chamada de fator de balanceamento.
Dessa maneira, cada nó de uma árvore balanceada pode ter fator
de balanceamento entre -1 e +1. Idealmente, uma árvore binária é
perfeitamente balanceada quando todos os seus nós têm fatores de
balanceamento nulos.

4.3.4 Árvore Binária Completa

A árvore binária completa é um tipo de árvore com grau 0 ou 2, na
qual seus nós folhas podem estar apenas no último e no penúltimo
nível, conforme observado na Figura 4.23.

Fonte: elaborada pela autora.

Figura 4.23 | Árvore binária completa

Finalizando a seção

Nesta seção, você aprendeu sobre os grafos, que representam
um tipo de estrutura de dados muito comum nas aplicações
computacionais; alguns conceitos importantes sobre esse tipo de
estrutura, exemplificando a solução de algumas definições relacionadas
aos grafos; conceitos básicos, terminologias de uma árvore e os
principais tipos delas aplicados na resolução de alguns problemas
específicos.

U4 - Árvores e grafos128

Atividades de aprendizagem

1. Você aprendeu os principais conceitos relacionados aos grafos, incluindo
a definição de arestas. Dessa maneira, quantas arestas tem um grafo com
vértices de graus 5; 2; 2; 2; 2; 1?
A) 2.
B) 9.
C) 4.
D) 7.
E) 5.

2. Na estrutura de dados, existem diversos tipos de árvores, por exemplo:
árvore rubro-negra, AVLS, binária etc. Nas árvores binárias, cada nó pode ter,
no máximo, duas subárvores. Dessa forma, o grau de cada nó pode ser 0, 1
ou 2. Analise a árvore binária ilustrada a seguir:

Em relação a ela, é correto afirmar que:
A) A raiz da árvore é representada pelo nó 7.
B) Os filhos do nó 3 são os nós 5 e 7.
C) Os pais do nó 8 são os nós 6 e 9.
D) Os nós 1, 2 e 4 são nós folhas.
E) A raiz da árvore é representada pelo nó 4.

U4 - Árvores e grafos 129

Seção 2

Árvore binária de busca
Introdução à seção

Nesta seção, você vai aprender que uma árvore pode ser
considerada binária se todos os nós à esquerda do nó raiz forem
menores que ele, bem como se todos os nós à direita forem maiores.
Serão apresentadas duas maneiras de implementação de uma árvore
binária de busca, assim como exemplos e simulações envolvendo as
operações mais importantes relacionadas a esse tipo de árvore. Serão
exemplificados trechos de código na Linguagem C que implementam
algumas operações para a manipulação dessas estruturas de dados e,
para finalizar, será definido o conceito de percurso ou travessia de uma
árvore binária de busca, exemplificado por meio de funções recursivas.

4.4 Árvore Binária de Busca

"A árvore binária de busca (ABB) é um tipo de árvore binária, na
qual todas as chaves (conteúdo dos nós) da subárvore esquerda
são menores que as chaves (conteúdos dos nós) do elemento raiz"
(TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 303). Da mesma
forma, todas as chaves da subárvore direita são maiores que a chave
do nó raiz.

Os elementos de uma árvore binária de busca são:

•	 Nós: são todos os itens armazenados em uma árvore.

•	 Raiz: é o nó do topo da árvore.

•	 Filhos: são os nós que vêm depois dos outros nós.

•	 Pais: são os nós que vêm antes dos outros nós.

•	 Folhas: são os nós que não têm filhos (últimos nós da árvore).

A Figura 4.24 ilustra um exemplo de árvore binária de busca.

U4 - Árvores e grafos130

Fonte: elaborada pela autora.

Figura 4.24 | Árvore binária de busca

Para a árvore apresentada na Figura 4.24, tem-se:

•	 Raiz: nó 4.

•	 Filhos: o nó 3 é filho do nó 2.

•	 Pais: o nó 8 é pai dos nós 6 e 9.

•	 Folhas: 1, 3, 5, 7 e 9.

Nesta seção, todas as implementações das operações serão
baseadas em árvores binárias de busca, uma vez que representam o
tipo de árvore mais utilizado e difundido na literatura e em aplicações
cotidianas.

4.5 Implementação Estática de uma Árvore Binária de Busca

Na implementação estática de uma árvore binária de busca, os nós
são armazenados por nível em um vetor. Assim, se um nó ocupa a
posição i na árvore, seus filhos diretos estarão nas posições:

•	 2i+1: nós à esquerda.

•	 2i+2: nós à direita.

Como vantagem da utilização desse tipo de implementação, pode-
se citar a economia de espaço de memória, já que o espaço reservado
é somente para o armazenamento do conteúdo de cada nó. Quanto à
desvantagem, a maior delas está associada aos espaços vazios que se
dão quando a árvore não for completa por níveis, ou sofrer eliminação
de nós.

Geralmente, as operações básicas para manipulação de árvores
implementadas de forma estática são:

•	 Criação de uma árvore vazia;

U4 - Árvores e grafos 131

•	 Definição de um nó;

•	 Verificação de árvore vazia;

•	 Impressão dos nós da árvore;

•	 Exclusão dos elementos da árvore.

Na Figura 4.25, é demonstrado um exemplo de árvore binária de
busca e a simulação de implementação estática da mesma.

Fonte: elaborada pela autora

Figura 4.25 | Implementação estática

4.5.1 Definição de um nó

O primeiro passo para a implementação de uma ABB de maneira
estática é a definição das informações que serão armazenadas em
cada nó da árvore. Outro ponto importante é determinar se um
elemento do vetor contém um nó válido ou está vazio. Uma solução
é inicializar as posições vazias do vetor com o valor -1. Porém, essa
solução funciona apenas no caso de os elementos armazenados nos
nós da árvore serem sempre positivos. Outra solução é criar um campo
adicional chamado “usado". Assim, cada nó pode ser representado por
uma struct, conforme código a seguir:

4.5.2 Inicialização

Para a inicialização de uma ABB é aconselhável a criação de uma
função para inicializar o vetor. A inicialização deve preencher todos
os campos usados do vetor como valor “0” para que os elementos

U4 - Árvores e grafos132

possam ser inseridos posteriormente. Deve-se também inicializar o
campo info com “0” para indicar que não há nenhuma informação
nesse campo. A seguir, será apresentado um exemplo de função que
realiza a inicialização de uma ABB.

4.5.2 Inserção de Nós

Para a inserção de elementos em uma árvore estática, deve-se
pensar que os nós serão armazenados por nível em um vetor. Assim,
se um nó ocupa a posição i na árvore, então seus filhos diretos estão
nas posições:

•	 2i+1: nós à esquerda

•	 2i+2: nós à direita

O novo nó é sempre inserido como um nó folha. Para facilitar o
entendimento da operação de inserção, acompanhe a simulação da
inserção de alguns nós em uma árvore binária de busca. Considere
a ABB da Figura 4.26, que contém os nós E, B e J, sendo o nó “E” a
raiz desta árvore. Suponha que se deseja inserir a letra “G”: essa letra é
comparada primeiramente com o nó raiz, e como a letra “G” é maior
que a letra “E”, esse novo nó será inserido na subárvore direita. No nível
abaixo, a letra “G” agora é comparada com a letra “J”, e como “G” é
menor que “J”, o novo nó será inserido à esquerda de “J”. Como não
existem mais nós à esquerda de “J”, o novo nó é inserido nesta posição.
Lembre-se sempre que os novos nós somente são inseridos como nós
folhas.

U4 - Árvores e grafos 133

Fonte: elaborada pela autora.

Figura 4.26 | Inserção do nó G

Agora, suponha que se deseja inserir um novo nó que contém a
chave “A”. Primeiramente, o nó “A” é comparado com a raiz (nó E),
e como “A” é menor que “E”, o novo nó será inserido na subárvore
esquerda. Descendo um nível, o nó “A” é comparado com o nó “B”, e
como ele é menor que “B”, é inserido à esquerda, conforme processo
ilustrado pela Figura 4.27.

Fonte: elaborada pela autora.

Figura 4.27 | Inserção do nó A

Em outra situação, o nó com chave 	 “D” será inserido nessa
árvore. Da mesma maneira, esse nó é comparado com o nó raiz, e
como é menor, vai ser inserido na subárvore esquerda. Seguindo o
processo de inserção, o novo nó é comparado com o nó “B”, e como
tem valor maior, é inserido à direita do nó raiz, conforme ilustrado na
Figura 4.28.

U4 - Árvores e grafos134

Fonte: elaborada pela autora.

Figura 4.28 | Inserção do nó D

Todos os outros nós serão inseridos da maneira ilustrada nas figuras
anteriores, seguindo os passos:

•	� Procurar por um local para inserir o novo nó, começando a
comparação a partir do nó raiz.

•	� Para cada nó raiz de uma subárvore, compare: se o novo nó
possui um valor menor do que o valor do nó raiz, caminhar
para a subárvore esquerda; se o valor é maior que o valor no
nó raiz, caminhar para a subárvore direita.

•	� Se uma referência (filho esquerdo/direito de um nó raiz) nula é
atingida (nó folha), inserir o novo nó como sendo filho do nó
raiz.

Agora, será exemplificada a inserção de alguns elementos inteiros
em uma árvore vazia. Considere a inserção do conjunto de números
na sequência: 17, 99, 13, 1, 3, 100. No início, a ABB está vazia, ou seja,
não possui nenhum nó. O primeiro nó a ser inserido é o nó com o
valor “17”. Nesse caso, esse nó é inserido na raiz, conforme observado
na Figura 4.29.

Fonte: elaborada pela autora.

Figura 4.29 | Inserção do nó 17

A inserção do valor “99” inicia-se na raiz, comparando-se esse valor
com o valor “17”. Como “99” é maior que “17”, o novo nó deve ser

U4 - Árvores e grafos 135

inserido na subárvore direita do nó, contendo o valor “17”, sendo que
esta subárvore está inicialmente nula. Esse processo é ilustrado na
Figura 4.30.

Fonte: elaborada pela autora.

Figura 4.30 | Inserção do nó 99

A inserção do nó com o valor “13” inicia-se na raiz, comparando-se
o valor “13” com o valor “17”. Como “13” é menor que “17”, o novo nó
deve ser inserido na subárvore esquerda do nó raiz. Já que o nó 17 não
possui descendente esquerdo, o novo nó será inserido na árvore nesta
posição, conforme ilustrado na Figura 4.31.

Fonte: elaborada pela autora.

Figura 4.31 | Inserção do nó 13

Para inserir o nó de valor “1”, repete-se o mesmo procedimento:
compara-se o valor “1” com o valor “17”; como “1” é menor que “17”,
o novo nó será inserido na subárvore esquerda. Chegando nessa
subárvore, encontra-se o nó “13”, e como “1” é menor que “13”, esse
nó será inserido na subárvore esquerda de “13”, conforme Figura 4.32.

Fonte: elaborada pela autora.

Figura 4.32 | Inserção do nó 1

U4 - Árvores e grafos136

Para inserir o valor 3, deve-se repetir o procedimento:

•	 Como 3<17, será inserido na subárvore esquerda.

•	 Chegando na subárvore esquerda, encontra-se o nó 13.

•	 Como 3<13, desce mais um nível à esquerda.

•	� Chegando à subárvore esquerda, encontra-se o nó 1, e como
3>1, esse nó será inserido na subárvore direita, conforme
ilustrado na Figura 4.33.

Fonte: elaborada pela autora.

Figura 4.33 | Inserção do nó 3

Repete-se o procedimento para realizar a inserção do elemento
100:

•	� Compara-se o valor do nó a ser inserido com o valor do nó
raiz. Como 100 > 17, caminha-se para a subárvore direita.

•	� Como 100 é maior que 99, caminha-se para a direita e o novo
nó é inserido, conforme observado na Figura 4.34.

Fonte: elaborada pela autora.

Figura 4.34 | Inserção do nó 100

U4 - Árvores e grafos 137

Questão para reflexão

Você consegue imaginar a vantagem principal relacionada à busca de
dados em uma árvore binária de busca?

4.5.3 Implementação Dinâmica de uma Árvore Binária de Busca

"A implementação dinâmica é o tipo mais utilizado para manipulação
de árvores binárias de busca" (TENEMBAUM; LANGSAM; AUGENSTEIN,
2004, p. 321). A Figura 4.35 apresenta a estrutura de um nó que possui
um campo em que armazena o conteúdo e dois ponteiros: ponteiro da
direita e da esquerda. Na figura também pode-se visualizar a representação
gráfica de uma árvore, assim como a representação com nós dinâmicos.

Fonte: elaborada pela autora.

Figura 4.35 | Implementação Dinâmica

"A estrutura de dados para uma árvore binária é uma estrutura
dinâmica, assim como as listas encadeadas, em que cada nó é
representado por um registro," contendo (TENEMBAUM; LANGSAM;
AUGENSTEIN, 2004, p. 310):

•	 um campo chave do tipo inteiro, string etc.;

•	 um ponteiro para as subárvores esquerda e direita;

•	� outros campos de dados, de acordo com o problema de
aplicação.

No código a seguir, é apresentado um exemplo de definição de um
nó para uma ABB.

U4 - Árvores e grafos138

4.5.3.1 Criação de uma Árvore

Para a criação de uma árvore binária de busca é utilizada uma
estrutura em que é alocado espaço para o armazenamento dos nós da
árvore, conforme código a seguir:

4.5.3.2 Inserção de Nós

A inserção de um novo nó em uma ABB consiste em determinar a
posição em que esse nó irá ocupar na árvore, cuja raiz é apontada por
um ponteiro.

Se o ponteiro for nulo, então a árvore está vazia e o novo nó se
tornará a raiz da árvore, ou seja, o ponteiro passará a apontar para
esse novo nó. Segundo Tenembaum, Langsan e Augenstein (2004),
algumas regras de inserção para esse caso são:

•	� O processo de inserção parte do nó raiz (supondo que ele já
exista, caso contrário, o novo nó será o elemento a ser inserido
na raiz).

•	� A partir do critério específico de ordenação da árvore, decide-
se qual subárvore será percorrida.

•	� Dentro da nova subárvore repete-se o procedimento,
considerando sua raiz, até que se chegue a uma subárvore
vazia (sem raiz).

Se o ponteiro do nó raiz não for nulo, três situações podem ocorrer:

•	� A chave do novo nó é menor que a chave da raiz, logo, o novo
nó somente poderá ser inserido na subárvore esquerda da raiz.

U4 - Árvores e grafos 139

Nesse caso, compara-se novamente o novo elemento com a
raiz da subárvore esquerda e as mesmas três situações podem
ocorrer.

•	� A chave do novo nó é igual à chave da raiz e, consequentemente,
esse novo nó não poderá ser inserido, pois uma árvore binária
de busca somente admite uma ocorrência de cada chave.

•	� A chave do novo nó é maior do que a chave da raiz. Então,
o novo nó terá que ser inserido na subárvore direita da raiz.
Nesse caso, o valor da chave do novo nó é comparado com
a raiz da subárvore direita, sendo possíveis as três situações
descritas.

Exceto no caso de ocorrência da situação de chave já existente, o
processo é repetido recursivamente até que se encontre uma subárvore
vazia (ponteiro nulo). Lembrando que todos os nós serão sempre a raiz
de uma subárvore vazia, ou seja, os nós sempre são inseridos como
nós folhas.

A seguir, é apresentada uma sugestão de código para a função de
inserção de elementos em uma árvore binária de busca.

4.5.3.3 Verificação de uma Árvore Vazia

"A função de verificação indica se uma árvore é ou não vazia, ou
seja, compara o valor do ponteiro da raiz da árvore com o valor nulo"
(TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 308). Se o ponteiro
tiver o valor igual a nulo, então a árvore está vazia, conforme o código
a seguir:

U4 - Árvores e grafos140

4.5.3.4 Liberação de Memória

A função para liberação de memória alocada por uma árvore possui
algumas características (TENEMBAUM; LANGSAM; AUGENSTEIN, 2004,
p. 336):

•	 As subárvores devem ser liberadas antes de se liberar o nó raiz.

•	 Retorna uma árvore vazia, representada por NULL.

A seguir, será apresentado um exemplo de função em C que realiza
a liberação de memória ocupada por uma ABB.

A função de impressão dos elementos de uma árvore percorre-a
recursivamente, visitando todos os nós e imprimindo seus conteúdos
ou chaves, conforme demonstrado no código a seguir.

U4 - Árvores e grafos 141

4.5.3.6 Exclusão de Nós

Para excluir um nó de uma árvore binária de busca, deve-se levar
em conta três casos distintos: exclusão na folha, exclusão de um nó
com 1 filho e exclusão de um nó com 2 filhos. Os três casos serão
apresentados a seguir.

a) Exclusão na folha

A exclusão de um nó na folha é o caso mais simples de remoção,
pois basta remover o nó folha da árvore. Nesse caso, os ponteiros da
esquerda e direita do nó pai são “setados” para NULL. A Figura 4.36
ilustra o processo de exclusão de um nó folha, no caso, o nó “G”. Os
nós “A” e “D” também podem ser removidos desta forma.

Fonte: elaborada pela autora.

Figura 4.36 | Exclusão de um nó folha

b) Exclusão de um nó com 1 filho

Ao excluir um nó que possui um filho, esse filho assume (sobe)
a posição do pai. Nesse caso, o ponteiro apropriado do pai passa a
apontar para o filho, conforme ilustrado na Figura 4.37.

Fonte: elaborada pela autora.

Figura 4.37 | Exclusão de um nó com 1 filho

U4 - Árvores e grafos142

c) Exclusão de um nó com 2 filhos

Nesse caso de exclusão, pode-se proceder de duas maneiras:

•	� Substituir o valor do nó a ser retirado pelo valor sucessor (o nó
mais à esquerda da subárvore direita).

•	� Substituir o valor do nó pelo valor antecessor (o nó mais à
direita da subárvore esquerda) e, assim, remover-se-á o nó
sucessor (ou antecessor).

Os passos para a remoção de um nó com dois filhos podem ser
descritos por:

•	� Encontrar o elemento que precede o elemento a ser retirado
na ordenação. Isso equivale a encontrar o elemento mais à
direita da subárvore à esquerda;

•	� Trocar a informação do nó a ser retirado com a informação do
nó encontrado;

•	 Excluir o nó encontrado.

Na Figura 4.38, deseja-se remover o nó de valor “30”. Esse nó
possui como sucessor imediato o valor “35” (nó mais à esquerda da sua
subárvore direita). Excluindo o nó de valor “30”, o nó de valor “35” será
promovido no lugar do nó a ser excluído, enquanto a sua subárvore
direita será promovida para subárvore esquerda do nó com valor “40”.

Fonte: elaborada pela autora.

Figura 4.38 | Exclusão de um nó com 2 filhos

U4 - Árvores e grafos 143

A seguir, será apresentada uma função que realiza os três tipos de
exclusões de nós apresentados nesta seção.

Para saber mais

Este vídeo contém um breve apanhado sobre o funcionamento
básico dos algoritmos de inserção e remoção de elementos de uma
árvore binária de busca. Disponível em: <https://www.youtube.com/
watch?v=XZ0MEDhb4oE>. Acesso em: 19 nov. 2017.

4.6 Percursos

"Percurso é o caminho realizado pelos nós da árvore com o objetivo de
consultar ou alterar a informação neles contida" (TENEMBAUM; LANGSAM;
AUGENSTEIN, 2004, p. 510). Existem quatro tipos de percursos:

U4 - Árvores e grafos144

•	 Percurso Pré-ordem.

•	 Percurso In-ordem.

•	 Percurso Pós-ordem.

•	 Percurso em Nível.

A seguir serão apresentados os principais tipos de percursos.

4.6.1 Percurso Pré-Ordem (R, E, D)

Neste percurso, visita-se primeiramente a raiz e depois as subárvores
esquerda e direita, respectivamente. O percurso é iniciado pela raiz da
árvore; assim que o nó é visitado, o valor é mostrado (1ª passagem).
Dessa maneira, na árvore ilustrada na Figura 4.39 o resultado do
percurso é: 1, 2, 4, 5, 3, 6, 7.

Fonte: elaborada pela autora.

Figura 4.39 | Percurso Pré-Ordem

No código a seguir, tem-se uma função recursiva, em que é
impresso o conteúdo de cada nó da árvore binária, percorrendo a
árvore na ordem: raiz, subárvore esquerda e subárvore direita.

4.6.2 Percurso In-Ordem (E, R, D)

No percurso In-Ordem, percorre-se primeiramente a subárvore

U4 - Árvores e grafos 145

da esquerda, visita-se a raiz e, por último, percorre-se a subárvore da
direita. Assim, esse percurso é iniciado pela raiz da árvore, caminha-
se inicialmente pelos nós da esquerda, somente exibindo os valores
quando todos à esquerda já tiverem sido visitados (2ª passagem). O
resultado do percurso in-ordem da árvore ilustrada na Figura 4.40 é: 4,
2, 5, 1, 6, 3, 7.

Fonte: elaborada pela autora.

Figura 4.40 | Percurso In-Ordem

A seguir, será apresentado um exemplo de código que realiza o
percurso in-ordem, no qual a árvore é percorrida na seguinte ordem:
subárvore esquerda, raiz e subárvore direita.

4.6.3 Percurso Pós-Ordem (E, D, R)

"Neste tipo de percurso, percorre-se a subárvore da esquerda, logo
após, percorre-se a subárvore da direita e, finalmente, visita-se a raiz"
(TENEMBAUM; LANGSAM; AUGENSTEIN, 2004, p. 520). Dessa maneira,
inicia-se o percurso pela raiz da árvore, caminhando a princípio pelos
nós da esquerda e, em seguida, pelos nós da direita, apenas exibindo
os valores quando todos os nós descendentes já tiverem sido visitados
(3ª passagem). O resultado do percurso pós-ordem da árvore ilustrada
na Figura 4.41 é: 4, 5, 2, 6, 7, 3, 1.

U4 - Árvores e grafos146

Fonte: elaborada pela autora.

Figura 4.41 | Percurso Pós-Ordem

No código a seguir, será apresentada uma função que realiza o
percurso pós-ordem, na qual a árvore é percorrida na seguinte ordem:
subárvore esquerda, subárvore direita e raiz.

4.6.4 Percurso em Nível

Neste tipo de percurso, a árvore é percorrida no sentido de cima
para baixo e da esquerda para direita. "É o percurso mais fácil de ser
compreendido, porém, o mais difícil de ser programado, já que é
necessário utilizar uma fila em um algoritmo iterativo" (TENEMBAUM;
LANGSAM; AUGENSTEIN, 2004, p. 521). A seguir, um exemplo de
código que apresenta o percurso em nível em uma árvore binária. A
função utiliza uma fila implementada em um vetor fila, em que i é o
índice do primeiro item da fila e f-1 é o índice do último elemento,
supondo que todos os elementos da fila são diferentes de NULL.

U4 - Árvores e grafos 147

Para saber mais

Nesta página, são mostradas as diferentes maneiras de se caminhar em
uma árvore por meio de animações de fácil compreensão. Disponível
em: <http://www.ufpa.br/sampaio/curso_de_estdados_1/arvores/
pagina_10_07_2001/aula26.htm>. Acesso em: 19 set. 2017.

Finalizando a seção

Neste tema, você aprendeu conceitos básicos sobre árvores
binárias, assim como alguns códigos responsáveis pela implementação
de operações básicas com esse tipo de estrutura de dados. Algumas
simulações de inserção e exclusão de nós foram realizadas, já que essas
operações são consideradas as mais trabalhosas para implementação.
Visto que as árvores podem ser implementadas de forma estática ou
dinâmica, foram apresentadas operações básicas para a manipulação de
ambas; soluções para quatro tipos de percursos, exemplos de códigos
para sua implementação e, por fim, foram também apresentados
alguns tipos de percurso em uma árvore binária.

U4 - Árvores e grafos148

Atividades de aprendizagem

1. Observe a árvore ilustrada na figura a seguir:

Em relação à profundidade, nível e parentesco de cada nó, analise as
seguintes afirmativas:
I) A nó E está no nível 2.
II) O nó H está no nível 3.
III) O pai do nó A é o nó B.
IV) A profundidade da árvore é 4.
Assinale a alternativa correta:
a) As afirmativas I, II, III e IV estão corretas.
b) Apenas as afirmativas I e II estão corretas.
c) Apenas as afirmativas I e III estão corretas.
d) Apenas as afirmativas II e IV estão corretas.
e) Apenas as afirmativas III e IV estão corretas.

2. Realize os quatro tipos de percurso na árvore abaixo, escrevendo a
sequência dos nós visitados.

U4 - Árvores e grafos 149

Fique ligado

Nesta unidade, você aprendeu sobre os grafos, que representam
um tipo de estrutura de dados muito comum nas aplicações
computacionais, especialmente na implementação de jogos. Foram
apresentados alguns conceitos importantes sobre esse tipo de
estrutura, exemplificando matematicamente a solução de alguns
conceitos relacionados aos grafos. Exemplos e simulações envolvendo
as operações mais importantes relacionadas aos grafos foram
apresentados.

Você também aprendeu os conceitos básicos sobre árvores
binárias, assim como alguns códigos responsáveis pela implementação
de operações básicas com esse tipo de estrutura de dados. Algumas
simulações de inserção e exclusão de nós foram realizadas, já que essas
operações são consideradas as mais trabalhosas para implementação.
Foi visto que as árvores podem ser implementadas de forma estática
ou dinâmica; logo, foram apresentadas operações básicas para
manipulação de ambas.

Finalizando, foram apresentados alguns tipos de percursos em uma
árvore binária, com algumas soluções para quatro tipos de percursos,
assim como exemplos de códigos para sua implementação.

Para concluir o estudo da unidade

Nesta unidade, você conheceu os principais tipos de percursos
que podem ser realizados em uma árvore binária de busca. Também
existem métodos para busca de dados em grafos, como: busca em
profundidade (DFS) e busca em largura (BFS), sendo que a principal
diferença entre essas buscas está relacionada à estrutura de dados
auxiliar que é empregada. Enquanto a busca BFS utiliza uma fila de
vértices, a busca DFS utiliza uma pilha que armazena os vértices de
grafo.

Atividades de aprendizagem da unidade

1. Na árvore binária de busca (ABB), todas as chaves (conteúdo dos nós)
da subárvore esquerda são menores que as chaves (conteúdos dos nós) do
elemento raiz. Da mesma forma, todas as chaves da subárvore direita são
maiores que a chave do nó raiz. Considere a ABB ilustrada na figura a seguir:

U4 - Árvores e grafos150

Suponha a inclusão do nó “13”.
Em qual posição esse novo elemento será incluído na árvore?
a) Na subárvore direita de 9.
b) Na subárvore esquerda de 9.
c) Na subárvore esquerda de 7.
d) Na subárvore direita de 9.
e) Na subárvore esquerda de 5.

2. Na árvore binária de busca (ABB), todas as chaves (conteúdo dos nós)
da subárvore esquerda são menores que as chaves (conteúdos dos nós) do
elemento raiz. Da mesma forma, todas as chaves da subárvore direita são
maiores que a chave do nó raiz. Considere a ABB ilustrada na figura a seguir:

Suponha a exclusão do nó "3".
O que acontecerá com essa árvore?
a) O nó 1 passa a ser o pai do nó 2.
b) O nó 2 passa a ser a raiz da árvore.
c) O nó 1 é deslocado para a subárvore direita do nó 2.
d) O nó 3 é simplesmente removido.
e) A subárvore esquerda do nó 4 deixa de existir

U4 - Árvores e grafos 151

3. Os grafos representam um tipo de estrutura de dados muito comum
nas aplicações computacionais, especialmente na implementação de jogos.
Os grafos são compostos por vértices e arestas. O grau de um vértice é o
número de arcos que incidem sobre um vértice. Neste contexto, analise o
grafo a seguir:

Qual é o grau do vértice C?
a) 1.
b) 0.
c) 2.
d) 3.
e) 4.

4. A característica principal de uma árvore binária de busca (ABB) é a
existência de duas subárvores: esquerda e direita, o que facilita a pesquisa
por elementos. Suponha que foram inseridos, nesta sequência, os seguintes
elementos em uma ABB: 10, 5, 15, utilizando a seguinte função para a
inserção:

Imagine que o próximo elemento a ser inserido é o nó de valor 17. Na
execução dessa função para a inserção desse novo elemento, é correto
afirmar que:

U4 - Árvores e grafos152

I) A instrução if(numero <(*pRaiz)→numero) somente será falsa quando o
valor a ser inserido for maior que o nó sendo comparado.
II) A função inserir, por ser recursiva, chama a si mesma até que o local
correto para a inserção do novo nó seja encontrado.
III) Como o valor a ser inserido (valor 17) é maior que o valor do nó raiz, a
navegação pela árvore é realizada por meio da subávore da direita do nó
raiz.
IV) A instrução if(*pRaiz == NULL) somente será verdadeira se for encontrado
um nó folha, ou seja, um local no qual o novo nó será inserido.
Assinale a alternativa correta.
a) apenas a afirmativa I está correta.
b) apenas a afirmativa IV está correta.
c) apenas as afirmativas II e III estão corretas.
d) apenas as afirmativas I e III estão corretas.
e) as afirmativas I, II, III e IV estão corretas.

5. A estrutura não linear de maior aplicação em computação, provavelmente,
é a estrutura de árvore ou simplesmente árvore. Analise a árvore ilustrada na
figura abaixo:

A respeito dessa árvore, é correto afirmar que:
a) O nó “A” possui nível igual a 0 (zero).
b) O nó “B” possui nível igual a 0 (zero).
c) O nó “E” possui grau igual a 1 (um).
d) O nó “C” possui grau igual a 5 (cinco).
e) A altura da árvore é igual a 7 (sete).

U4 - Árvores e grafos 153

Referências
JUNIOR, Dilermando Piva; et al. Estrutura de Dados e Técnicas de Programação. 1. ed.
São Paulo: Elsevier - Campus, 2014.

MIZRAHI, Victorine Viviane. Treinamento em linguagem C++. São Paulo: Makron, 2006.

TENENBAUM, Aaron M.; LANGSAM, Yedidyah; AUGENSTEIN, Moshe J. Estruturas de
dados usando C. São Paulo: Pearson Makron Books, 2004.

VELOSO, Pauloet al. Estrutura de dados. Rio de Janeiro: Campus, 1986.

Anotações

Anotações

Anotações

Anotações

Anotações

Anotações

Anotações

U
N

O
P

A
R

LIN
G

U
A

G
E

N
S D

E
 P

R
O

G
R

A
M

A
Ç

Ã
O

 E
 E

ST
R

U
T

U
R

A
 D

E
 D

A
D

O
S

Linguagens de
programação
e estrutura de
dados

